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Abstract

Relational database systems have traditionally optimzed for
I/O performance and organized records sequentially on disk
pages using the N-ary Storage Model (NSM) (a.k.a., slotted
pages). Recent research, however, indicates that cache utilization
and performance is becoming increasingly important on modern
platforms. In this paper, we first demonstrate that in-page data
placement is the key to high cache performance and that NSM
exhibits low cache utilization on modern platforms. Next, we pro-
pose a new data organization model called PAX (Partition
Attributes Across), that significantly improves cache perfor-
mance by grouping together all values of each attribute within
each page. Because PAX only affects layout inside the pages, it
incurs no storage penalty and does not affect I/O behavior.
According to our experimental results, when compared to NSM
(a) PAX exhibits superior cache and memory bandwidth utiliza-
tion, saving at least 75% of NSM’s stall time due to data cache
accesses, (b) range selection queries and updates on memory-
resident relations execute 17-25% faster, and (c) TPC-H queries
involving I/O execute 11-48% faster.

1 Introduction

The communication between the CPU and the secondary
storage (I/O) has been traditionally recognized as the
major database performance bottleneck. To optimize data
transfer to and from mass storage, relational DBMSs have
long organized records in slotted disk pages using the N-
ary Storage Model (NSM). NSM stores records contigu-
ously starting from the beginning of each disk page, and
uses an offset (slot) table at the end of the page to locate
the beginning of each record [27].

Unfortunately, most queries use only a fraction of
each record. To minimize unnecessary I/O, the Decompo-
sition Storage Model (DSM) was proposed in 1985 [10].
DSM partitions an n-attribute relation vertically into n
sub-relations, each of which is accessed only when the
corresponding attribute is needed. Queries that involve
multiple attributes from a relation, however, must spend

tremendous additional time to join the participating sub-
relations together. Except for Sybase-IQ [33], today’s rela-
tional DBMSs use NSM for general-purpose data place-
ment [20][29][32].

Recent research has demonstrated that modern data-
base workloads, such as decision support systems and spa-
tial applications, are often bound by delays related to the
processor and the memory subsystem rather than I/O
[20][5][26]. When running commercial database systems
on a modern processor, data requests that miss in the cache
hierarchy (i.e., requests for data that are not found in any
of the caches and are transferred from main memory) are a
key memory bottleneck [1]. In addition, only a fraction of
the data transferred to the cache is useful to the query: the
item that the query processing algorithm requests and the
transfer unit between the memory and the processor are
typically not the same size. Loading the cache with useless
data (a) wastes bandwidth, (b) pollutes the cache, and (c)
possibly forces replacement of information that may be
needed in the future, incurring even more delays. The
challenge is to repair NSM’s cache behavior without com-
promising its advantages over DSM.

This paper introduces and evaluates Partition
Attributes Across (PAX), a new layout for data records
that combines the best of the two worlds and exhibits per-
formance superior to both placement schemes by eliminat-
ing unnecessary accesses to main memory. For a given
relation, PAX stores the same data on each page as NSM.
Within each page, however, PAX groups all the values of a
particular attribute together on a minipage. During a
sequential scan (e.g., to apply a predicate on a fraction of
the record), PAX fully utilizes the cache resources,
because on each miss a number of a single attribute’s val-
ues are loaded into the cache together. At the same time,
all parts of the record are on the same page. To reconstruct
a record one needs to perform a mini-join among
minipages, which incurs minimal cost because it does not
have to look beyond the page.

We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of the Shore stor-
age manager [7]. We vary query parameters including
selectivity, projectivity, number of predicates, distance
between the projected attribute and the attribute in the
predicate, and degree of the relation. The experimental
results show that, when compared to NSM, PAX (a) incurs
50-75% fewer second-level cache misses due to data
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accesses when executing a main-memory workload, (b)
executes range selection queries and updates in 17-25%
less elapsed time, and (c) executes TPC-H queries involv-
ing I/O 11-42% faster than NSM on the platform we stud-
ied. When compared to DSM, PAX executes queries faster
and its execution time remains stable as more attributes are
involved in the query, while DSM’s execution time
increases due to the high record reconstruction cost.

Finally, PAX has several additional advantages.
Implementing PAX on a DBMS that uses NSM requires
only changes to the page-level data manipulation code.
PAX can be used as an alternative data layout, and the
storage manager can decide to use PAX or not when stor-
ing a relation, based solely on the number of attributes.
Furthermore, research [13] has shown that compression
algorithms work better with vertically partitioned relations
and on a per-page basis, and PAX has both of these charac-
teristics. Finally, PAX can be used orthogonally to other
storage decisions such as affinity graph-based partitioning
[11], because it operates at the page level.

The rest of this paper is organized as follows. Section
2 presents an overview of the related work, and discusses
the strengths and weaknesses of the traditional NSM and
DSM data placement schemes. Section 3 explains the
design of PAX in detail and analyzes its storage require-
ments, while Section 4 describes the implementation of
basic query processing and data manipulation algorithms.
Section 5 analyzes the effects of PAX on cache perfor-
mance on a simple numeric workload. Section 6 demon-
strates PAX’s efficiency on a subset of the TPC-H
decision-support workload. Finally, Section 7 concludes
with a summary of the advantages of PAX and discusses
possibilities for further improvement.

2 Related work

Several recent workload characterization studies report
that database systems suffer from high memory-related
processor delays when running on modern platforms. A
detailed survey of these studies is provided elsewhere
[1][34]. All studies that we are aware of agree that stall
time due to data cache misses accounts for 50-70% (OLTP
[19]) to 90% (DSS [1]) of the total memory-related stall
time, even on architectures where the instruction cache
miss rate (i.e., the number of cache misses divided by the
number of cache references) is typically higher when exe-
cuting OLTP workloads [21].

Research in computer architecture, compilers, and
database systems has focused on optimizing data place-
ment for cache performance. A compiler-directed
approach for cache-conscious data placement profiles a
program and applies heuristic algorithms to find a place-
ment solution that optimizes cache utilization [6]. Cluster-
ing, compression, and coloring are techniques that can be
applied manually by programmers to improve cache per-

formance of pointer-based data structures [8]. For database
management systems, attribute clustering improves both
compression [13] and the performance of relational query
processing [29].

The remainder of this section describes the advan-
tages and disadvantages of the dominant data placement
scheme (NSM) and its alternative (DSM), and briefly out-
lines their variants.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted disk
pages [27] obeying the N-ary Storage Model (NSM).
NSM stores records sequentially on data pages. Figure 1
depicts an NSM page after inserting four records of a rela-
tion R with three attributes: SSN, name, and age. Each
record has a record header (RH) containing a null bitmap,
offsets to the variable-length values, and other implemen-
tation-specific information [20][29][32]. Each new record
is typically inserted into the first available free space start-
ing at the beginning of the page. Records may have vari-
able lengths, and therefore a pointer to the beginning of
the new record is stored in the next available slot from the
end of the page. One can access the nth record in a page by
following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits
poor cache performance. Consider the query:

select name
from R
where age < 40;

To evaluate the predicate, the query processor uses a scan
operator [14] that retrieves the value of the attribute age
from each record in the relation. Assuming that the NSM
page in Figure 1 is already in main memory and that the
cache block size is smaller than the record size, the scan
operator will incur one cache miss per record. If age is a 4-
byte integer, it is smaller than the typical cache block size

FIGURE 1: The cache behavior of NSM.
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(32-128 bytes). Therefore, along with the needed value,
each cache miss will bring into the cache the other values
stored next to age (shown on the right in Figure 1), wast-
ing useful cache space to store unreferenced data, and
incurring unnecessary accesses to main memory.

2.2 The Decomposition Storage Model

Vertical partitioning is the process of striping a relation
into sub-relations, each containing the values of a subset
of the initial relation’s attributes, in order to reduce I/O-
related costs [24]. The fully decomposed form of vertical
partitioning (one attribute per stripe) is called the Decom-
position Storage Model (DSM) [10]. DSM partitions an n-
attribute relation vertically into n sub-relations (for exam-
ple, Figure 2 shows relation R stored in DSM format).
Each sub-relation contains two attributes, a logical record
id (surrogate) and an attribute value (essentially, a sub-
relation is a clustered index on the attribute). Sub-relations
are stored as regular relations in slotted pages, enabling
each attribute to be scanned independently.

Unlike NSM, DSM offers a high degree of spatial
locality when sequentially accessing the values of one
attribute. During a single-attribute scan, DSM exhibits
high I/O and cache performance. DSM performs well on
DSS workloads known to utilize a small percentage of the
attributes in a relation, as in Sybase-IQ which uses vertical
partitioning combined with bitmap indices for warehous-
ing applications [25]. In addition, DSM can improve cache
performance of main-memory database systems, assuming
that the record reconstruction cost is low [4].

Unfortunately, DSM’s performance deteriorates sig-
nificantly for queries that involve multiple attributes from
each participating relation. The database system must join
the participating sub-relations on the surrogate to recon-
struct the partitioned records. The time spent joining sub-
relations increases with the number of attributes in the
result relation. An alternative algorithm [11] partitions

each relation based on an attribute affinity graph, which
connects pairs of attributes based on how often they
appear together in queries. The performance of affinity-
based vertical partitioning depends heavily on whether
queries involve attributes within the same fragment, sig-
nificantly limiting its capability.

3 PAX

In this section, we introduce a new strategy for placing
records on a page called PAX (Partition Attributes
Across). PAX (a) maximizes inter-record spatial locality
within each column in the page, thereby eliminating
unnecessary requests to main memory without a space
penalty, (b) incurs a minimal record reconstruction cost,
and (c) is orthogonal to other design decisions because it
only affects the layout of data stored on a single page (e.g.,
one may decide to store one relation using NSM and
another using PAX, or first use affinity-based vertical par-
titioning, and then use PAX for storing the ‘thick’ sub-
relations). This section presents PAX’s detailed design.

3.1 Overview

The motivation behind PAX is to keep the attribute values
of each record on the same page as in NSM, while using a
cache-friendly algorithm for placing them inside the page.
PAX vertically partitions the records within each page,
storing together the values of each attribute in minipages.
Figure 3 depicts a PAX page that stores the same records
as the NSM page in Figure 1 in a column-major fashion.
When using PAX, each record resides on the same page as
it would reside using NSM, but all SSN values, name val-
ues, and age values are grouped together on minipages
respectively. PAX increases the inter-record spatial local-
ity (because it groups values of the same attribute that
belong to different records) with minimal impact on the
intra-record spatial locality. Although PAX employs in-

FIGURE 2: The Decomposition Storage Model (DSM).
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page vertical partitioning, it incurs minimal record recon-
struction costs, because it does not need to perform a join
to construct a result tuple.

3.2 Design

To store a relation with degree n (i.e., with n attributes),
PAX partitions each page into n minipages. It then stores
values of the first attribute in the first minipage, values of
the second attribute in the second minipage, and so on.
The page header at the beginning of each page contains
pointers to the beginning of each minipage. The record
header information is distributed across the minipages.
The structure of each minipage is determined as follows:
• Fixed-length attribute values are stored in F-minipages.

At the end of each F-minipage there is a presence bit
vector with one entry per record that denotes null val-
ues for nullable attributes.

• Variable-length attribute values are stored in V-
minipages. V-minipages are slotted, with pointers to the
end of each value. Null values are denoted by null
pointers.

Each newly allocated page contains a page header and
as many minipages as the degree of the relation. The page
header contains the number of attributes, the attribute sizes
(for fixed length attributes), offsets to the beginning of the
minipages, the current number of records on the page and
the total space available on the page. Figure 4 depicts an
example PAX page in which two records have been
inserted. There are two F-minipages, one for the SSN
attribute and one for the age attribute. Because the name
attribute is a variable-length string, it is stored in a V-
minipage. At the end of each V-minipage there are offsets
to the end of each variable-length value.

Records on a page are accessed either sequentially or
in random order (e.g., through a non-clustered index). To
sequentially access a subset of attributes, the algorithm
accesses the values in the appropriate minipages. For
instance, the sequential scan algorithm reads all values of
a fixed-length attribute f or a variable-length attribute v
from a newly accessed page, and the indexed scan reads a
value of an attribute a, given the record id [34].

To store a relation, PAX requires the same amount of
space as NSM. NSM stores the attributes of each record
contiguously, and therefore it requires one offset (slot) per
record and one additional offset for each variable-length
attribute in each record. In contrast, PAX stores one offset
for each variable-length value, plus one offset for each of
the n minipages. Therefore, regardless of whether a rela-
tion is stored using NSM of PAX, it will occupy the same
number of pages. As explained in Section 4.1, implemen-
tation-specific details may introduce slight differences
which are insignificant to the overall performance.

3.3 Evaluation

The data placement scheme determines two factors that
affect performance. First, the inter-record spatial locality
minimizes data cache-related delays when executing itera-
tors over a subset of fields in the record. DSM provides
inter-record spatial locality, because it stores attributes
contiguously, whereas NSM does not. Second, the record
reconstruction cost minimizes the delays associated with
retrieving multiple fields of the same record.

Table 1 summarizes the characteristics of NSM,
DSM, and PAX, demonstrating the tradeoff between inter-
record spatial locality and record reconstruction cost.
NSM exhibits suboptimal cache behavior. In contrast,
DSM requires costly joins that offset the benefit from the
inter-record spatial locality. PAX offers the best of both
worlds by combining the two critical characteristics: inter-
record spatial locality, and minimal record reconstruction
overhead, by keeping all parts of each record in the same
page. As an additional advantage, implementing PAX on
an existing DBMS requires only changes to the page-level
data manipulation code.

4 System Implementation

We implemented NSM, PAX, and DSM in the Shore stor-
age manager [7]. Shore provides all the features of a mod-
ern storage manager, namely B-trees and R-trees [16],
ARIES-style recovery [22], hierarchical locking (record,
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page, file), and clock-hand buffer management with hints.
Typically, Shore stores records as contiguous byte
sequences.

We implemented NSM, DSM and PAX as alternative
data layouts in Shore. To implement NSM, we added
attribute-level functionality on top of the existing Shore
file manager (as explained later in this section). DSM was
implemented on top of Shore, by decomposing the initial
relation into n Shore files that are stored in slotted pages
using NSM. Each sub-relation includes two columns, one
with a logical record id and one with the attribute value.
Finally, PAX was implemented as an alternative data page
organization in Shore. All schemes use record-level lock-
ing and the ARIES-style logging and recovery mechanism
provided by Shore. Only minor modifications to the recov-
ery system were needed to handle PAX records. In the rest
of this section, we discuss record implementation and the
most relevant data manipulation and retrieval algorithms.

4.1 Record Implementation

Figure 5 illustrates how NSM records were implemented.
The fixed-length attribute values are stored first, followed
by an array of offsets and a mini-heap containing the vari-
able-length attribute values. In front of each record, Shore
adds a 12-byte tag with Shore-specific information such as
serial number, record type, header length, and record
length. In addition, it uses 4-byte slots at the end of the
page (two bytes for the offset and another two for the
amount of space allocated for each record). This adds up
to a 16-byte overhead per record.

In the current implementation, TPC-H tables stored
using PAX need 8% less space than those stored using
NSM. Up to half of the space saved in PAX is due to elim-
inating the slot table at the end of a page. The rest is
Shore-specific overhead resulting from the 12-byte record
tag. Commercial DBMSs store a header in front of each
record, that keeps information such as the NULL bitmap,
space allocated for the record, true record size, fixed part
size, and other flags. The record header’s size varies with
the number and type of columns in the table. For the TPC-
H table Lineitem, the record header would be about 8
bytes. Therefore, the Shore tag adds a space overhead of 4
bytes per record. Due to this overhead, NSM takes 4%
more storage than it would if the Shore tag were replaced
with common NSM header information.

4.2 Data Manipulation Algorithms

BULK-LOADING AND INSERTIONS. The algorithm to
bulk-load records from a data file starts by allocating each
minipage on the page based on attribute value size. In the
case of variable-length attributes, it initially uses a hint
(either from the DBMS or the average length from the first
few records) as an indication of the average value size, and
then uses feedback from the actual size of inserted values
to adjust the average value size. PAX inserts records by
copying each value into the appropriate minipage. When
variable-length values are present, minipage boundaries
may need to be adjusted to accommodate records as they
are inserted in the page. If a record fits in the page but its
individual attribute values do not, the algorithm recalcu-
lates minipage sizes based on the average value sizes in
the page so far and the new record size, and reorganizes
the page structure by moving minipage boundaries appro-
priately to accommodate new records. When the page is
full, it allocates a new page with the initial minipage sizes
equal to the ones in the previously populated page (so the
initial hints are quickly readjusted to the true per-page
average value sizes).

Shore supports inserting a record into the first page
that can accomodate it (i.e., not necessarily appending
records at the end of the relation). The NSM insertion
algorithm concatenates record values into the byte
sequence presented in Figure 5. Shore then adds a tag and
stores the record. PAX calculates the position of each
attribute value on the page, stores the value, and updates
the presence bitmaps and offset arrays accordingly.
UPDATES. NSM uses the underlying infrustructure pro-
vided by Shore, and updates attribute values within the
record. Updates on variable-length attributes may stretch
or shrink the record; page reorganizations may be needed
to accomodate the change and the slot table must be
updated. If the updated record grows beyond the free
space available in the page, the record is moved to another
page. PAX updates an attribute value by computing the
offset of the attribute in the corresponding minipage. Vari-
able-length attribute updates require only V-minipage-
level reorganizations, to move values of the updated
attribute only. If the new value is longer than the space
available in the V-minipage, the V-minipage borrows
space from a neighboring minipage. If the neighboring

FIGURE 5: An example NSM record structure in Shore.
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minipages do not have sufficient space, the record is
moved to a different page.
DELETIONS. The NSM deletion algorithm uses the slot
array to mark deleted records, and the free space can be
filled upon future insertions. PAX keeps track of deleted
records using a bitmap at the beginning of the page, and
determines whether a record has been deleted using fast
bitwise calculations. Upon record deletion, PAX reorga-
nizes minipage contents to fill the gaps to minimize frag-
mentation that could affect PAX's optimal cache
utilization. As discussed in Section 6.2, minipage reorga-
nization does not affect PAX’s performance because it
incurs minimal overhead. Attribute value offsets are calcu-
lated by converting the record id to the record index within
the page, which takes into account deleted records.

For deletion-intensive workloads, an alternative
approach is to mark records as deleted but defer reorgani-
zations, leaving gaps in the minipages. As a result, cache
utilization during file scan is suboptimal, because deleted
record data are occasionally brought into the cache. To
maintain cache performance to acceptable levels, the sys-
tem schedules periodic file reorganizations. In the near
future we plan to implement this algorithm and provide the
option to use on a per-file basis the one best suited for each
application. For the purposes of this study, however, we
have implemented the first “exhaustive” alternative.

4.3 Query Operators

SCAN OPERATOR. A scan operator that supports sarga-
ble predicates [28] was implemented on top of Shore.
When running a query using NSM, one scan operator is
invoked that reads each record and extracts the attributes
involved in the predicate from it. PAX invokes one scan
operator for each attribute involved in the query. Each
operator sequentially reads values from the corresponding
minipage. The projected attribute values for qualifying
records are retrieved from the corresponding minipages
using computed offsets. With DSM, as many operators as
there are attributes in the predicate are invoked, each on a
sub-relation. The algorithm makes a list of the qualifying
record ids, and retrieves the projected attribute values
from the corresponding sub-relations through a B-tree
index on record id.
JOIN OPERATOR. The adaptive dynamic hash join algo-
rithm [23], which is also used in DB2 [20], was imple-
mented on top of Shore. The algorithm partitions the left
table into main-memory hash tables on the join attribute.
When all available main memory has been consumed, all
buckets but one are stored on the disk. Then it partitions
the right table into hash tables in a similar fashion, probing
dynamically the main-memory portion of the left table
with the right join attribute values. Using only those
attributes required by the query, it then builds hash tables
with the resulting sub-records. The join operator receives

its input from two scan operators, each reading one rela-
tion. The output can be filtered through a function that is
passed as a parameter to the operator.

5 Analysis of the impact of data placement

To evaluate PAX’s impact on cache performance, we first
ran plain range selection queries on a memory-resident
relation that consists of fixed-length numeric attributes.
Such a controlled workload helped us understand the facts
and perform sensitivity analysis. This section analyzes
cache performance and execution time when running sim-
ple queries, and discusses the three schemes’ limitations.

5.1 Setup and methodology

We conducted experiments on a Dell 6400 PII Xeon/MT
system running Windows NT 4.0. This computer features
a Pentium II Xeon processor running at 400MHz, 512MB
of main memory, and a 100MHz system bus. The proces-
sor has split 16-KB first-level (L1) data and instruction
caches and a unified 512-KB second-level (L2) cache.
Caches at both levels are non-blocking (they can service
new requests while earlier ones are still pending) with 32-
byte cache blocks.1 We obtained experimental results
using the Xeon’s hardware counters and the methodology
described in previous work [1].

The workload consists of one relation and variations
of the following range selection query:

select avg(ap)
from R
where aq > Lo and aq < Hi (1)

where ap, aq are attributes in R. This query is sufficient to
examine the net effect of each data layout when accessing
records sequentially or randomly (given their record id).
Unless otherwise stated, R contains eight 8-byte numeric
attributes, and is populated with 1.2 million records. For
predictability and easy correctness verification of experi-
mental results, we chose the attribute size so that exactly
four values fit in the 32-byte cache line, and record sizes
so that record boundaries coincide with cache line bound-
aries. We varied the projectivity, the number of attributes
in the selection predicate, their relative position, and the
number of attributes in the record. The values of the
attribute(s) used in the predicate are the same as in the
l_partkey attribute of the Lineitem table in the TPC deci-
sion-support benchmarks [15], with the same data skew
and uniform distribution.

PAX primarily targets optimizing data cache behav-
ior, and does not affect I/O performance in any way. In

1. Other systems employ larger cache blocks (e.g., 64-128
bytes), especially in L2. In such systems, PAX’s spatial local-
ity will result in even higher cache and bandwidth utilization.
Results with larger cache blocks are shown in [3].



workloads where I/O latency dominates execution time,
the performance of PAX and NSM eventually converge.
PAX is designed to ensure high data cache performance
once the data page is available from the disk, and is
orthogonal to any additional optimizations to enhance I/O
performance. In the rest of this section, we study the
effects of the data placement scheme when running que-
ries on memory-resident relations.

5.2 Experimental results

Figure 6 shows the elapsed time when using NSM, PAX,
or DSM to run query (1), as the number of attributes
involved in the query is varied from 1 to 7. The graph
shows that, while the performance of the NSM and PAX
schemes are relatively insensitive to the changes, DSM’s
performance is very sensitive to the number of attributes
used in the query. When the query involves one or two
attributes from R, DSM actually performs well because
the record reconstruction cost is low. However, as the

number of attributes involved increases, DSM’s perfor-
mance deteriorates rapidly because it joins more sub-rela-
tions together. On the contrary, NSM and PAX maintain
stable performance, because all the attributes of each
record reside on the same page, eliminating the need for an
expensive join operation to reconstruct the record.

The rest of this section analyzes the significance of
the data placement scheme to query execution perfor-
mance. The first part discusses in detail the cache behavior
of NSM and PAX, while the second part presents a perfor-
mance sensitivity analysis for NSM and PAX as the query
projectivity and the number of attributes in the predicate
and the relation vary.

5.2.1 NSM vs. PAX Impact on Cache Behavior

Figure 7 illustrates that the cache behavior of PAX is sig-
nificantly superior to that of NSM. As the predicate is
applied to aq, NSM suffers one cache miss per record.
Because PAX groups attribute values together on a page, it
only incurs a miss every n records, where n is the cache
block size divided by the attribute size. In our experi-
ments, PAX takes a miss every four records (i.e., 32 bytes
per cache block divided by 8 bytes per attribute). Conse-
quently, PAX saves about 75% of the data misses NSM
incurs in the L2 cache.

PAX reduces cache delays related to data accesses,
and therefore runs queries faster. The graphs on the left
and center of Figure 7 show the processor stall time per
record due to data misses at both cache levels for NSM
and PAX, respectively (processing time is 100% during all
of the experiments, and therefore processor cycles are pro-
portional to elapsed time). Due to the higher spatial local-
ity, PAX reduces the data-related penalty at both cache
levels. The L1 data cache penalty does not affect the over-
all execution time significantly, because the penalty asso-
ciated with one L1 data cache miss is small (10 processor
cycles). Each L2 cache miss, however, costs 70-80

FIGURE 6: Elapsed time comparison as a function of the
number of attributes in the query.
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cycles.2 PAX reduces the overall L2 cache data miss pen-
alty by 70%. Therefore, as shown in the graph on the right
of Figure 7, the overall processor stall time is 75% less
when using PAX, because the processor does not need to
wait as long for data to arrive from main memory. The
memory-related penalty contributes 22% to the execution
time when using NSM, and only 10% when using PAX.

Reducing the data cache misses at both cache levels
and minimizing the data stall time also reduces the number
of instruction misses on the L2 cache, and minimizes the
associated delays. L2 is organized as a unified cache and
contains both data and instructions, potentially replacing
each other as needed to accomodate new requests. To eval-
uate the predicate, NSM loads the cache with unreferenced
data, which are likely to replace potentially needed
instructions and incur extra instruction misses in the
future. PAX only brings useful data into the cache, occu-
pying less space and minimizing the probability to replace
an instruction that will be needed in the future.

Although PAX and NSM have comparable instruction
footprints, the rightmost graph of Figure 7 shows that PAX
incurs less computation time. This is primarily due to
reducing memory-related delays. Modern processors can
retire3 multiple instructions per cycle; the Xeon can retire
up to three. When there are memory-related delays, the
processor cannot operate at its peak retirement bandwidth.
With NSM, only 30% of the total cycles retire three
instructions, with 60% retiring either zero or one instruc-
tion. As reported by previous studies [1][19], database sys-
tems suffer high data dependencies and the majority of
their computation cycles retire significantly fewer instruc-
tions than the processor’s peak retirement bandwidth. PAX
partially alleviates this problem by reducing the stall time,

and the queries execute faster because they exploit better
the processor’s superscalar ability.

5.2.2 NSM/PAX Sensitivity Analysis

As the number of attributes involved in the query
increases, the elapsed execution times of NSM and PAX
converge. Figure 8 depicts the query execution time when
the projectivity varies from 1 to 7 attributes, and the predi-
cate is applied to the eighth attribute (selectivity is 50%).
In the experiments shown, PAX is faster even when the
resulting relation includes all the attributes. The reason is
that the selectivity is maintained at 50%, and PAX exploits
spatial locality in both the predicates and the projected
attributes. In contrast, NSM brings useless information
into the cache 50% of the time. Varying the number of
attributes in the selection predicate has a similar effect
[34]. In these experiments, DSM’s performance is about a
factor of nine slower than NSM and PAX. As the number
of attributes involved in the query increases, DSM must
join the corresponding number of sub-relations.

Figure 9 shows the elapsed time PAX and NSM need
to process each record, as a function of the number of
attributes in the record. More attributes per record implies
fewer records per page. To keep the relation memory-resi-
dent, doubling the record size implies halving R’s cardi-
nality. Therefore, the execution times are normalized by
R’s cardinality. The graph illustrates that, while PAX still
suffers fewer misses than NSM, the execution time is
dominated by factors other than data stall time, such as the
buffer manager overhead associated with getting the next
page in the relation after completing the scan of the current
page. Therefore, as the degree of the relation increases, the
times PAX and NSM need to process a record converge.

6 Evaluation Using DSS Workloads

This section compares PAX and NSM when running a
TPC-H decision-support workload. Decision-support
applications are typically memory and computation inten-
sive [20]. The relations are not generally memory-resident,

2. The corresponding latency on a Pentium 4 processor is more
than 300 cycles (source: Intel Corporation).

3. Xeon’s pipeline is capable of simultaneously issuing (reading)
three instructions, executing five instructions (that were
issued in previous cycles) and retiring (writing results onto
registers and cache) three reviously issued instructions.

FIGURE 8: PAX/NSM sensitivity to projectivity.
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and the queries execute projections, selections, aggregates,
and joins. The results show that PAX outperforms NSM on
all TPC-H queries in this workload.

6.1 Setup and methodology

We conducted experiments on the system described in
Section 5.1, using a 128-MB buffer pool and a 64-MB
hash join heap. The workload consists of the TPC-H data-
base and a variety of queries. The database and the TPC-H
queries were generated using the dbgen and qgen software
distributed by the TPC. The database includes attributes of
type integer, floating point, date, fixed-length string, and
variable-length string. We present results for bulk-loading,
range selections, four TPC-H queries, and updates:

Bulk-loading. When populating tables from data
files, NSM performs one memory-to-memory copy per
record inserted, and stores records sequentially. PAX
inserts records by performing as many copy operations as
the number of values in the tuple, as described in Section
3.2. DSM creates and populates as many relations as the
number of attributes. We compare the elapsed time to store
a full TPC-H dataset when using each of the three schemes
for variable database sizes. Full recovery was turned on
for all three implementations.

Range selections. This query group consists of que-
ries similar to those presented in Section 5.1 but without
the aggregate function. Instead, the projected attribute
value(s) were written to an output relation. To stress the
system to the maximum possible extent, the range selec-
tions are on Lineitem, the largest table in the database.
Lineitem contains 16 attributes having a variety of types,
including three variable-length attributes. There are no
indices on any of the tables, as most implementations of
TPC-H in commercial systems include mostly clustered
indices, which have a similar access behavior to sequential
scan [2]. As in Section 5, we vary the projectivity and the
number of attributes involved in the predicate.

TPC-H queries. We implemented four TPC-H que-
ries, Q1, Q6, Q12, and Q14, on top of Shore. Queries 1
and 6 are range selections with multiple aggregates and
predicates. The implementation pushes the predicates into
Shore, computes the aggregates on the qualifying records,
groups and orders the results. Queries 12 and 14 are
equijoins with additional predicates and compute condi-
tional aggregates. Their implementation uses the adaptive
dynamic hash join operator described in Section 4.

Updates. We evaluate update transactions on
Lineitem’s attributes. Each transaction implements the fol-
lowing statement:

update R
set ap=ap + b
where aq > Lo and aq < Hi (2)

where ap, aq, and b are numeric attributes in Lineitem. We
vary the number of updated fields, the number of fields in

the predicate, and the selectivity. For each query, we mea-
sure the transaction execution time (i.e., including flushing
the updated pages to the disk), and the actual main-mem-
ory update times, to determine the memory-hierarchy
impact of the update algorithm.

6.2 Bulk-loading

Figure 10 compares the elapsed time required to load
a 100-MB, 200-MB, and 500-MB TPC-H database with
each of the three storage organizations. DSM load times
are much higher than those of NSM and PAX, because
DSM creates one relation per attribute and stores one
NSM-like record per value, along with the value’s record
id. In Section 5.2 we demonstrated that, when executing
queries that involve multiple attributes, DSM never out-
performs either of the other two schemes. Therefore, the
rest of Section 6 will focus on comparing NSM and PAX.

Although the two schemes copy the same total
amount of data to the page, NSM merely appends records.
In contrast, PAX may need to perform additional page
reorganizations if the relation contains variable-length
attributes. PAX allocates V-minipage space in a new page
based on average attribute sizes, and may occasionally
over- or underestimate the expected minipage size. As a
consequence, a record that would fit in an NSM page does
not fit into the corresponding PAX page unless the current
minipage boundaries are moved. In such cases, PAX needs
additional page reorganizations to move minipage bound-
aries and accommodate new records.

The bulk-loading algorithm for PAX estimates initial
minipage sizes on a page to be equal to the average
attribute value sizes on the previously populated page.
With the TPC-H database, this technique allows PAX to
use about 80% of the page without any reorganization.
Attempting to fill the rest of the 20% of each page results
in an average of 2.5 reorganizations per page, half of

FIGURE 10: Elapsed bulk-loading times.
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which only to accomodate one last record on the current
page before allocating the next one. Figure 10 shows this
worst case scenario: using an exhaustive algorithm that
attempts to fill each page by 100%, PAX incurs 2-10%
performance penalty when compared to NSM.

As an alternative, we implemented a smarter algo-
rithm that reorganizes minipages only if the free space on
the page is more than 5%. As was expected, the number of
reorganizations per page dropped to half the number
incurred by the exhaustive algorithm. A more conservative
algorithm with a 10% “reorganization-worthy” free-space
threshold dropped the average number of reorganizations
to 0.8 per page. Table 2 shows that, as the average number

of reorganizations falls, the performance penalty of PAX
versus NSM during bulk-loading becomes minimal (and is
independent of the database size).

6.3 Queries

In Section 5.2 we explained why the performance
improvement provided by PAX is reduced as the projectiv-
ity increases and the query accesses a larger portion of the
record. As shown in Section 5, PAX’s performance is
superior to NSM when running range selections, espe-
cially when the query uses only a fraction of the record.
The leftmost bar group (labeled ‘RS’) in Figure 11 shows
the average speedup4 obtained by a variety of range selec-
tion queries on Lineitem (described in Section 6.1). When
using a 100-MB, a 200-MB, and a 500-MB dataset the
speedup is 14%, 13%, and 10%, respectively.

Figure 11 also depicts PAX/NSM speedups when run-
ning four TPC-H queries against a 100, 200, and 500-MB
TPC-H database. PAX outperforms NSM for all these
experiments. The speedups obtained, however, are not
constant across the experiments due to a combination of
differing amounts of I/O and interactions between the
hardware and the algorithms being used.

Queries 1 and 6 are essentially range queries that
access roughly one third of each record in Lineitem and
calculate aggregates. The difference between these TPC-H
queries and the plain range selections (RS) discussed in

the previous paragraph is that TPC-H queries exploit fur-
ther the spatial locality, because they access projected data
multiple times to calculate aggregate values. Therefore,
PAX speedup is higher due to the increased cache utiliza-
tion and varies from 15% (in the 500-MB database) to
42% (in the smaller databases).

Queries 12 and 14 are more complicated and involve
two joined tables, as well as range predicates. The join is
performed by the adaptive dynamic hash join algorithm, as
was explained in Section 4. Although both the NSM and
the PAX implementation of the hash-join algorithm only
copy the useful portion of the records, PAX still outper-
forms NSM because (a) with PAX, the useful attribute val-
ues are naturally isolated, and (b) the PAX buckets are
stored on disk using the PAX format, maintaining the
locality advantage as they are accessed for the second
phase of the join. PAX executes query 12 in 37-48% less
time than NSM. Since query 14 accesses fewer attributes
and requires less computation than query 12, PAX outper-
forms NSM by only 6-32% when running this query.

6.4 Updates

The update algorithms implemented for NSM and PAX
(discussed in Section 4.2) are based on the same philoso-
phy: update attribute values in place, and perform reorga-
nizations as needed. The difference lies in updating
variable-length attributes. When replacing a variable-
length attribute value with a larger one, PAX only needs to
shift half the data of the V-minipage on average to acco-
modate the new requirements. NSM, on average, must
move half the data of the page (because it moves records
that include “innocent” unreferenced attributes). Less fre-
quently, variable-length updates will result in a page reor-
ganization for both schemes. Overall, massive updates on
variable-length fields are rare; TPC-C’s only update query
is on the client credit history in the Payment transaction,

TABLE 2: Effect of the “reorganization worthy” threshold
on PAX bulk-loading performance.

“Reorganization-
worthy” threshold

Avg. # reorg.
/ page

Penalty wrt.
NSM

0% (always reorganize) 2.25 10.1%

5% (reorg. if < 95% full) 1.14 4.9%

10% (reorg. if < 90% full) 0.85 0.8%

4. [17].Speedup
ExecutionTime NSM( )
ExecutionTime PAX( )---------------------------------------------------------- 1–

 
  100%×=

FIGURE 11: PAX/NSM speedup on read-only queries.
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and only affects one record (plus, the history field has a
maximum length of 500 bytes).

When executing updates PAX is always faster than
NSM, providing a speedup of 10-16%. The speedup is a
function of the fraction of the record accessed as well as
the selectivity. As discussed in Section 5.2, the execution
times of NSM and PAX converge as we increase the pro-
jectivity. Similarly, the PAX/NSM speedup decreases as
we increase the number of updated attributes. Figure 12
illustrates the speedup as a function of the number of
updated attributes, when running updates on fixed-length
attributes in a 100-MB database for various selectivities.
For low selectivities, PAX provides a speedup of 10-16%,
and its execution is dominated by read requests. As the
selectivity increases, the probability that the updated
attributes are in the cache is higher. However, increasing
the selectivity also increases the probability that every data
request will cause replacement of “dirty” cache blocks,
which must be written back to memory. For this reason, as
the selectivity increases from 20%-100%, the speedup is
dominated by the write-back requests and becomes oblivi-
ous to the change in the number of updated attributes.

7 Summary

Data accesses to the cache hierarchy are a major perfor-
mance bottleneck for modern database workloads [1].
Commercial DBMSs use NSM (N-ary Storage Modelary
Storage Model) instead of DSM (Decomposition Storage
Model) as the general data placement method, because the
latter often incurs high record reconstruction costs. This
paper shows that NSM has a negative effect on data cache
performance, and introduces PAX (Partition Attributes
Across), a new data page layout for relational DBMSs.
PAX groups values for the same attribute together in
minipages, combining inter-record spatial locality and

high data cache performance with minimal record recon-
struction cost at no extra storage overhead.

We compared PAX to both NSM and DSM:
• When compared to NSM, PAX incurs 75% less data

cache stall time, while range selection queries and
updates on main-memory tables execute in 17-25% less
elapsed time. When running TPC-H queries that per-
form calculations on the data retrieved and require I/O,
PAX incurs a 11-48% speedup over NSM.

• When compared to DSM, PAX cache performance is
better and queries execute consistently faster because
PAX does not require a join to reconstruct the records.

PAX incurs no storage penalty when compared with either
NSM or DSM. PAX reorganizes the records within each
page, and therefore can be used orthogonally to other stor-
age schemes (such as NSM or affinity-based vertical parti-
tioning) and transparently to the rest of the DBMS.
Finally, page-level compression algorithms are likely to
perform better using PAX due to the type uniformity
within each minipage and the smaller in-page value
domain [13].
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