

Database System Internals Replication

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

March 10, 2021

CSE 444 - Winter 2020

Ullman Book Chapter 20.6

Database management systems. Ramakrishnan and Gehrke. Third Ed. Chapter 22.11

- Goals of replication
- Three types of replication
 - Synchronous (aka eager) replication
 - Asynchronous (aka lazy) replication
 - Two-tier replication

Goals of Replication

Goal 1: availability

Goal 2: performance

• But, it's easy to build a replicated system that reduces performance and availability

Types of Replication

March 10, 2021

Synchronous Replication

- Also called eager replication
- All updates are applied to all replicas (or to a majority) as part of a single transaction (need two phase commit)
- Main goal: as if there was only one copy
 - Maintain consistency
 - Maintain one-copy serializability
 - I.e., execution of transactions has same effect as an execution on a non-replicated db
- Transactions must acquire global locks

Synchronous Replication

Synchronous Master Replication

One master for each object holds primary copy

- The "Master" is also called "Primary"
- To update object, transaction must acquire a lock at the master
- Lock at the master is global lock
- Master propagates updates to replicas synchronously
 - Updates propagate as part of the same distributed transaction
 - Need to run 2PC at the end
 - For example, using triggers

Crash Failures

What happens when a secondary crashes?

- Nothing happens
- When secondary recovers, it catches up

What happens when the master/primary fails?

- Blocking would hurt availability
- Must chose a new primary: run election

Network Failures

Network failures can cause trouble...

- Secondaries think that primary failed
- Secondaries elect a new primary
- But primary can still be running
- Now have two primaries!

To avoid problem, only majority partition can continue processing at any time

In general,

- Whenever a replica fails or recovers...
- a set of communicating replicas must determine...
- whether they have a majority before they can continue

Types of Replication

Synchronous Group Replication

Master-less

- Any node can initiate a transaction!
- Need to gather a number of nodes that agree on a particular transaction

Synchronous Group Replication

With n copies

- Exclusive lock on x copies is global exclusive lock
- Shared lock on s copies is global shared lock
- Must have: 2x > n and s + x > n
- Version numbers serve to identify current copy

Synchronous Group Replication

Majority locking

- $s = x = \lceil (n+1)/2 \rceil$ eg: 11 nodes: need 6 locked
- No need to run any reconfiguration algorithms

Read-locks-one, write-locks-all

- s=1 and x = n, high read performance
- Need to make sure algo runs on quorum of computers

Synchronous Replication Properties

Favours consistency over availability

- Only majority partition can process requests
- There appears to be a single copy of the db

High runtime overhead

- Must lock and update at least majority of replicas
- Two-phase commit
- Runs at pace of slowest replica in quorum
- So overall system is now slower
- Higher deadlock rate (transactions take longer)

Types of Replication

Asynchronous Replication

- Also called lazy replication
- Also called optimistic replication
- Main goals: availability and performance
- Approach
 - One replica updated by original transaction
 - Updates propagate asynchronously to other replicas

Asynchronous Replication

Asynchronous Master Replication

One master holds primary copy

- Transactions update primary copy
- Master asynchronously propagates updates to replicas, which process them in same order (e.g. through log shipping)
- Ensures single-copy serializability
- What happens when master/primary fails?
 - Can lose most recent transactions when primary fails!
 - After electing a new primary, secondaries must agree who is most up-to-date

Types of Replication

Asynchronous Group Replication

- Also called multi-master
- Best scheme for availability
- Cannot guarantee one-copy serializability!

Asynchronous Group Replication

- Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - Db state does not reflect any serial execution
 - But all replicas have the same state
- Detect conflicts and reconcile replica states
- Different reconciliation techniques are possible
 - Manual
 - Most recent timestamp wins
 - Site A wins over site B
 - User-defined rules, etc.

Detecting Conflicts Using Timestamps

Detecting Conflicts Using Timestamps

- An extension of Multiversion Concurrency Control (MVCC) to multiple servers
- Standard MVCC: each data item X has a timestamp t: X₄, X₉, X₁₀, X₁₄, ..., X_t
- Vector Clocks: X has set of [server, timestamp] pairs X([s1,t1], [s2,t2],...)

Asynchronous Group Replication Properties

- Favours availability over consistency
 - Can read and update any replica
 - High runtime performance
- Weak consistency
 - Conflicts and reconciliation

- Goals of replication
- Three types of replication
 - Synchronous (aka eager) replication
 - Asynchronous (aka lazy) replication
 - Two-tier replication

Two-Tier Replication

- Benefits of lazy master and lazy group
- Each object has a master with primary copy
- When disconnected from master
 - Secondary can only run tentative transactions
- When reconnects to master
 - Master reprocesses all tentative transactions
 - Checks an acceptance criterion
 - If passes, we now have final commit order
 - Secondary undoes tentative and redoes committed

Conclusion

- Replication is a very important problem
 - Fault-tolerance (various forms of replication)
 - Caching (lazy master)
 - Warehousing (lazy master)
 - Mobility (two-tier techniques)
- Replication is complex, but basic techniques and trade-offs are very well known
 - Synchronous or asynchronous replication
 - Master or quorum

Some Popular NewSQL Systems

H-Store

- Research system from Brown U., MIT, CMU, and Yale
- Commercialized as VoltDB

Hekaton

- Microsoft
- Fully integrated into SQL Server
- Hyper
 - Hybrid OLTP/OLAP
 - Research system from TU Munich. Bought by Tableau
- Spanner
 - Google

H-Store Insight

TRADITIONAL DBMS:

H-Store Key Ideas

Main-memory storage

- Avoids disk IO costs / buffer pool costs
- Durability through snapshots + cmd log
- Replication
- Serial execution
 - One database partition per thread on one core
 - Avoid overheads related to locking
- All transactions are stored procedures
 - Command logging avoids heavy recovery overheads
- Avoid distributed transactions
 - But when needed, run 2PC

Voter Benchmark

Japanese "American Idol"

- Focus: DBMS with large main memories and many core CPUs
- Integrated with SQL Server
- Key user-visible features
 - Simply declare a table "memory resident"
 - Hekaton tables are fully durable and transactional, though non-durable tables are also supported
 - Query can touch both Hekaton and regular tables

Hekaton Key Details

- Idea: To increase transaction throughput must decrease number of instructions / transaction
- Main-memory DBMS
 - Optimize indexes for memory-resident data
 - Durability by logging and checkpointing records to external storage
- No partitioning
 - Any thread can touch any row of any table
- No locking
 - Uses a new MVCC method for isolation

Hekaton More Details

Optimized stored procedures

 Compile statements and stored procedures into customized, highly efficient machine code

Hybrid OLTP and OLAP

- In-memory data management
 - Including optimized indexes for memory-resident data
 - Data compression for cold data
- Data-centric code generation
 - SQL translated to LLVM
- OLAP separated from OLTP using MVCC
- Exploits hardware transactional memory
- Data shuffling and distribution optimizations

Conclusion

- Many innovations recently in
 - Big data analytics
 - Transaction processing at very large scale
- Many more problems remain open
- This course teaches foundations
- Innovate with an open mind!