Database System Internals

Two-Phase Commit (2PC)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

March 10, 2021 CSE 444 - Winter 2021 1

1

We are Learning about Scaling DBMSs

* Scaling the execution of a query
* Parallel DBMS
* MapReduce
« Spark

= Scaling transactions
« Distributed transactions
* Replication
* Scaling with NoSQL and NewSQL

[o

March 10, 2021 CSE 444 - Winter 2021 6

6

References

= Ullman book: Section 20.5

» Ramakrishnan book: Chapter 22

March 10, 2021 CSE 444 - Winter 2021 5

5

,/""/ﬁun many transactions 7 —
(in a large cluster I‘\‘ _ \
\;\\\ ‘ ,i ; I
. — 1| .
=0 | &
1 B =) | =1
= I / [1
= : L Ll R \
I B I Connection W -
(e.g., JDBC 1
I I I | HTTP/SSL
| | I |
—1{| | N
BE M, &
12 W B
O ——)
l l"""77 - — < |
- - Web Server Farm > p B —
March 10, 2021 N CSERI IR V==] rowser

7

3/10/21

Transaction Scaling Challenges

March 10, 2021

‘ oo

= Distribution

* There is a limit on transactions/sec on one server
* Need to partition the database across multiple servers
« If a transaction touches one machine, life is good!

« If a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit

= Replication
* Replication can help to increase throughput and lower
latency
« Create multiple copies of each database partition
» Spread queries across these replicas
» Easy for reads but writes, once again, become expensive!

CSE 444 - Winter 2021 8

Distributed Concurrency Control

March 10, 2021

10

= In theory, different techniques are possible
« Pessimistic, optimistic, locking, timestamps

= In practice, distributed two-phase locking
+ Simultaneously hold locks at all sites involved

*» Deadlock detection techniques
* Global waitfor graph (not very practical)

e Timeouts

= If deadlock: abort least costly local transaction

CSE 444 - Winter 2021 10

Distributed Transactions

= Concurrency control

» Failure recovery
* Transaction must be committed at all sites or at none of
the sites!
 No matter what failures occur and when they occur
* Two-phase commit protocol (2PC)

March 10, 2021

9

CSE 444 - Winter 2021

Two-Phase Commit: Motivation

Coordinator

1) User decide%%, > Subordinate 1

to commit
4) Coordinator 3) COMMIT
crashes
What do we do now? ' subordinate 2
P But | already aborted!
L 4 Subordinate 3 (maybe due to crash)
March 10, 2021 CSE 444 - Winter 2021

11

3/10/21

Two-Phase Commit Protocol

* One coordinator and many subordinates
» Phase 1: prepare
« All subordinates must flush tail of write-ahead log to disk before ack
* Must ensure that if coordinator decides to commit, they can commit!
» Phase 2: commit or abort
« Log records for 2PC include transaction and coordinator ids
« Coordinator also logs ids of all subordinates

= Principle
» Whenever a process makes a decision: vote yes/no or commit/abort
« Or whenever a subordinate wants to respond to a message: ack

+ First force-write a log record (to make sure it survives a failure)
» Only then send message about decision

* “Forget” completed transactions at the very end

« Once synchronized on whether the transaction has committed or

aborted, all nodes can stop logging any more information about that
transaction

March 10, 2021

12

CSE 444 - Winter 2021

2PC: Phase 2, Commit

) 5) Write: end, then forget transaction
Coordinator

. 2) COMMIT Subordinate 1
1) Force-write: — P
commit 4ACK~—__

Transaction is

2) COMMIT 3) Force-write: commit
now committed!

5) Commit transaction
and “forget” it

4) ACK\
) COMMIT . Subordinate 2

3) Force-write: commit
/ 5) Commit transaction
"~ Subordinate 3 and “forget” it
3) Force-write: commit
5) Commit transaction and “forget” it
March 10, 2021 CSE 444 - Winter 2021

14

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decideg| *—/8Mm ——~—wu |
to commit 4 YES N~—___)
3) Force-write: prepare
2) PREPARE
4) YES
4) YES % .
) PREPARE . Subordinate 2
3) Force-write: prepare
" Subordinate 3
3) Force-write: prepare

1

3
2PC with Abort - Phase 1

Coordinator
. 2) PREPARE Subordinate 1
1) User decide /M8 ——~—~—o1 1 |
to commit 4)YES™~—___ U

4) NO -
) PREPARE . Subordinate 2

3) Force-write: abort
/ 5) Abort transaction
"~ Subordinate 3 and “forget” it
3) Force-write: abort

5) Abort transaction and “forget” it
March 10, 2021 CSE 444 - Winter 2021

15

15

3/10/21

2PC with Abort - Phase 2

Coordinat 5) Write: end, then forget transaction
oordinator
2) ABORT Subordinate 1

1) Force-write: %
abort 4) ACK

3) Force-write: abort
5) Abort transaction
and “forget” it

" Subordinate 2

" Subordinate 3

16

Subordinate State Machine

» INIT and PREPARED ———
. o (INIT
involve waiting R Prepare
FW: Prepare
R: Prepare S: Yes vote
FW: Abort
S: No vote PREPARED |
. . "R: Commit
R: Abort .
FW: Abort FW: Commit
S: Ack S: Ack
" ABORTING | COMMITTING
Abort Commit
and forget and forget
March 10, 2021 CSE 444 - Winter 2021 18

18

Coordinator State Machine

= All states involve INIT
Waihng For messqges Receive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
N
ABORTING COMMITTING
R: ACKS \/R:ACKS
W: End W: End
Forget END Forget
17
Handling Site Failures
= Approach 1: no site failure detection
+ Can only do retrying & blocking
= Approach 2: timeouts
+ Since unilateral abort is ok,
« Subordinate can timeout in init state
« Coordinator can timeout in collecting state
* Prepared state is still blocking
» 2PC is a blocking protocol
March 10, 2021 CSE 444 - Winter 2021 19

19

3/10/21

Site Failure Handling Principles

* Retry mechanism
* In prepared state, periodically query coordinator

* In committing/aborting state, periodically resend messages
to subordinates

= If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of
transaction

= If there are no log records for a transaction after a
crash then abort transaction and “forget” it

March 10, 2021 CSE 444 - Winter 2021 20

Presumed Abort Protocol

= Optimization goals
« Fewer messages and fewer force-writes

= Principle
* If nothing known about a transaction, assume ABORT

= Aborting transactions need no force-writing

= Avoid log records for read-only transactions
* Reply with a READ vote instead of YES vote

= Optimizes read-only transactions

March 10, 2021 CSE 444 - Winter 2021 23

23

Observations

= Coordinator keeps transaction in transactions table until it
receives all acks
» To ensure subordinates know to commit or abort
* So acks enable coordinator to “forget” about transaction

= After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

= Read-only subtransactions: no changes ever need to be
undone nor redone

March 10, 2021 CSE 444 - Winter 2021 22

2PC State Machines (repeat)

N
lReceive: Commit | R: Prepare I ~ R: Prepare

INIT

Send: Prepare|[FW: Abort FW: Prepare

S: No vote S: Yes vote
COLLECTING .
PREPARED

R: No votes R:Yesvotes | R.aport ~R: Commit
FW: Abort FW: Commit : : it

FW-: Al FW: Commi
S: Abort /\ S: Commit S: Ackboy\Ack

ABORTING .
COMMITTING ABORTING COMMITTING

RIACKS ~~.— R:ACKS Abért — Commit

W: End END W:End | and forget and forget

24

24

3/10/21

3/10/21

Presumed Abort State Machines Presumed Abort Protocol

= With this protocol, we have cut an entire state from the
- coordinator state machine
INIT /\ Nt
Receive: Commit | R: Prepare | R: Prepare . - .
lSend: Prepare /W: Abort I FW: Prepare Less waiting and log writes
S: No vote S: Yes vote
COLLECTING ,
(PREPARED
R: Yes votes “R: Commit
R: No votes FW: Commit R: Abort /N FW: Commi
\éVZ ,:;)borrtt S: Commit W: Abol S: Ack
: Abol .
P N These are the basics of 2-PC!
COMMIITING ABORTING COMMITTING
R:ACKS | Aport Commit
END W:End | and forget and forget
25 March 10, 2021 CSE 444 - Winter 2021 26
25 26

