lation
dividual

Sessionld

NumberOfsession

Date
X1 [Exparimentin

f setwp
7 [setupio
Trial
Setuphiame
n
a2 SetupType
#1 |Sessionid
NumberOfTrial
2 [setupio
#s | Subjectin
st
ouration
NMarker
SetupMarker
Record edMovieFile
Note
Trial_has_Timecoursa [riat_tas_rrajectory
FKL | TrialiD FKL | TeiallD
#xz | rimecoursein #i2 | Trajectoryio

v

v

KindOfData

N

Timecourse [ratectory

¢ | Timecoursein o | Tesiectoryi
Frequency frequency
SegmentiD segmentid

KindotData
MarkerdD
NFrames

gl

MelisandrTheon

B A

Gendry

Walton

Sandor

\‘\m

X S
insaime,, RNty
AN Ly ivrion

A\ ay
Cerséi
Lora:

s
JoffreMargaeryan
Myrcelia Gregor

Meyn
iiyn

Podrick

KevzShae

Bronn

|

m.L"

mml

NS

B
i

T~

N\
WE

N

| "m

Sianiom 4

Worker 3

Worker 3 Worker 3

(a) Traditional parallel query plan

— 4

HyperCube
Shuffle

gl ube shuffle-based parallel g

Database System Internals

Two-Phase Commit (2PC)

10, 2021

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

CSE 444 - Winter 2021

References

» Ullman book: Section 20.5

= Ramakrishnan book: Chapter 22

March 10, 2021 CSE 444 - Winter 2021 5

We are Learning about Scaling DBMSs

= Scaling the execution of a query
* Parallel DBMS
* MapReduce
* Spark

= Scaling transactions
» Distributed transactions
* Replication

» Scaling with NoSQL and NewSQL

|

March 10, 2021 CSE 444 - Winter 2021 6

Run many transactions —
in a large cluster — \
— | |
I
I ﬁ\ﬁm |
| =) | =7
I = _ I | http
I |] &= I Connection mulftiplex
(e.g., JDBC [
| I I
— |
1 1T |l I
| g I | —,
| I

Web Server Farm

March 10, 2021 CSE 444 - Winter 2021

HTTP/SSL

Browser

Transaction Scaling Challenges

= Distribution
* There is a limit on transactions/sec on one server
* Need to partition the database across multiple servers
* If a transaction touches one machine, life is good!

* If a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit

= Replication
P
* Replication can help to increase throughput and lower
latency
» Create multiple copies of each database partition
* Spread queries across these replicas
» Easy for reads but writes, once again, become expensive!

March 10, 2021 CSE 444 - Winter 2021

Distributed Transactions

= Concurrency control

= Failure recovery

* Transaction must be committed at all sites or at none of
the sites!

* No matter what failures occur and when they occur
» Two-phase commit protocol (2PC)

March 10, 2021 CSE 444 - Winter 2021 9

Distributed Concurrency Control

= In theory, different techniques are possible

» Pessimistic, optimistic, locking, timestamps

= In practice, distributed two-phase locking

* Simultaneously hold locks at all sites involved

= Deadlock detection techniques
» Global waitfor graph (not very practical)

 Timeouts

= If deadlock: abort least costly local transaction

March 10, 2021 CSE 444 - Winter 2021

Two-Phase Commit: Motivation

Coordinator

Subordinate 1
1) User decides 2) (EI\/II\/IIT u i

to commit

4) Coordinator 3) COMMIT

crashes
What do we do now? Subordinate 2
But | already aborted!
Q _ (maybe due to crash)
Subordinate 3
March 10, 2021 CSE 444 - Winter 2021 11

Two-Phase Commit Protocol

= One coordinator and many subordinates
* Phase 1: prepare

« All subordinates must flush tail of write-ahead log to disk before ack

 Must ensure that if coordinator decides to commit, they can commit!
* Phase 2: commit or abort

* Log records for 2PC include transaction and coordinator ids
 Coordinator also logs ids of all subordinates

= Principle

* Whenever a process makes a decision: vote yes/no or commit/abort
« Or whenever a subordinate wants to respond to a message: ack

« First force-write a log record (to make sure it survives a failure)
« Only then send message about decision

= “Forget” completed transactions at the very end

« Once synchronized on whether the transaction has committed or

aborted, all nodes can stop logging any more information about that
transaction

March 10, 2021

CSE 444 - Winter 2021

2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decide San T~ >
to commit 4) YES “— O

3) Force-write: prepare
2) PREPARE

4) YES
4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

March 10, 2021 CSE 444 - Winter 2021

2PC: Phase 2, Commit

5) Write: end, then forget transaction

Coordinator

1) Force-write:
commit

Transaction is

now committed!

4) ACK

March 10, 2021

Subordinate 1

3) Force-write: commit
5) Commit transaction
and “forget” it

2) COMMIT
G e —
4) ACK Q
2) COMMIT
4) ACK
) COMMIT% Subordinate 2

Subordinate 3
3) Force-write: commit
5) Commit transaction

3) Force-write: commit
5) Commit transaction

and “forget” it

and “forget” it

CSE 444 - Winter 2021

2PC with Abort - Phase 1

Coordinator

. 2) PREPARE Subordinate 1
1) User decide San T~ >
to commit 4) YES “— O

) PREPARE 3) Force-write: prepare

) PREPARE Subordinate 2

3) Force-write: abort
5) Abort transaction

Subordinate 3 and “forget” it
3) Force-write: abort
5) Abort transaction and “forget” it

March 10, 2021 CSE 444 - Winter 2021

15

2PC with Abort - Phase 2

5) Write: end, then forget transaction

Coordinator
_ 2) ABORT Subordinate 1
1) Force-write: - ~— -
abort 4) ACK “— »

3) Force-write: abort
5) Abort transaction
and “forget” it

@ Subordinate 2

-

Subordinate 3

March 10, 2021 16

Coordinator State Machine

= All states involve INIT
quhng fOI" messages Receive: Commit
Send: Prepare
COLLECTING

R: No votes R: Yes votes
FW: Abort FW: Commit

S: Abort S: Commit

N\

ABORTING COMMITTING
RIACKS " RACKS

W: End W: End

Forget END Forget

March 10, 2021 17

Subordinate State Machine

= INIT and PREPARED
involve waiting

R: Prepare

FW: Prepare
R: Prepare S: Yes vote
FW: Abort
S: No vote
R: Abort R: Commit.
FW: Abort FW: Commit
S: Ack S AcK
Abort Commit
and forget and forget

March 10, 2021 CSE 444 - Winter 2021

Handling Site Failures

= Approach 1: no site failure detection

» Can only do retrying & blocking
= Approach 2: timeouts

» Since unilateral abort is ok,
 Subordinate can timeout in init state
» Coordinator can timeout in collecting state

* Prepared state is still blocking

= 2PC is a blocking protocol

March 10, 2021 CSE 444 - Winter 2021 19

Site Failure Handling Principles

= Retry mechanism
* In prepared state, periodically query coordinator

* In committing/aborting state, periodically resend messages
to subordinates

= If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of
transaction

= If there are no log records for a transaction after a
crash then abort transaction and “forget” it

March 10, 2021 CSE 444 - Winter 2021 20

= Coordinator keeps transaction in transactions table until it
receives all acks
* To ensure subordinates know to commit or abort
* So acks enable coordinator to “forget” about transaction

= After crash, if recovery process finds no IO?1 records for a
transaction, the transaction is presumed to have aborted

= Read-only subtransactions: no changes ever need to be
undone nor redone

March 10, 2021 CSE 444 - Winter 2021 22

Presumed Abort Protocol

= Optimization goals
» Fewer messages and fewer force-writes

= Principle
* If nothing known about a transaction, assume ABORT

= Aborting transactions need no force-writing

= Avoid log records for read-only transactions
* Reply with a READ vote instead of YES vote

= Optimizes read-only transactions

March 10, 2021 CSE 444 - Winter 2021 23

2PC State Machines (repeat)

INIT
lReceive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
ABORTING COMMITTING
RIACKS .~ R:ACKS
W: End END W: End

R: Prepare
FW: Abort
S: No vote

R: Abort
FW: Abort
S: Ack

Abort
and forget

PREPARED

R: Prepare
FW: Prepare
S: Yes vote

R: Commit
FW: Commit
S: Ack

ABORTING w

Commit
and forget

Presumed Abort State Machines

W: Abort
S: Abort

R: No votes

INIT

lReceive: Commit
Send: Prepare

ND

COLLECTING

R: Yes votes
FW: Commit
S: Commit

COMMITTING

/ R: ACKS

W: End

R: Prepare
W: Abort
S: No vote

R: Prepare
FW: Prepare
S: Yes vote

PREPARED
R: Commit

R: Abort FW: Commit
W: Abor S Ack

ABORTING w

Abort Commit
and forget and forget

Presumed Abort Protocol

= With this protocol, we have cut an entire state from the
coordinator state machine

= Less waiting and log writes

These are the basics of 2-PC!

March 10, 2021 CSE 444 - Winter 2021 26

