
3/8/21

1

1March 8, 2021

Database System Internals

CSE 444 - Winter 2021

Spark

1

Announcements

§Quiz on Lab 2 and 3 now on March 9th (was
pushed back because of lab 4)

§ Lab 5 due Thursday Mar. 18

§Additional accommodations:
• You may drop your lowest lab grade (including lab 5)
• The additional extensions to lab 5 (section 2.5) are

now optional
• Final report is now separate from the lab and still

required (just a 2 page writeup)

CSE 444 - Winter 2020 2March 8, 2021

2

References

§ Spark is an open source system from Berkeley

§Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing.
Matei Zaharia et. al. NSDI’12.

CSE 444 - Winter 2020 9March 8, 2021

9

Motivation

§Goal: Better use distributed memory in a
cluster

§Observation:
• Modern data analytics involves iterations
• Users also want to do interactive data mining
• In both cases, want to keep intermediate data in

memory and reuse it
• MapReduce does not support this scenario well

• Requires writing data to disk between jobs

CSE 444 - Winter 2020 10March 8, 2021

10

3/8/21

2

Approach

§New abstraction: Resilient Distributed Datasets

§RDD properties
• Parallel data structure
• Can be persisted in memory
• Fault-tolerant
• Users can manipulate RDDs with rich set of operators

CSE 444 - Winter 2020 11March 8, 2021

11

RDD Details

§An RDD is a partitioned collection of records
• RDD’s are typed: RDD[Int] is an RDD of integers

§An RDD is read only
• This means no updates to individual records
• This is to contrast with in-memory key-value stores

§ To create an RDD
• Execute a deterministic operation on another RDD
• Or on data in stable storage
• Example operations: map, filter, and join

CSE 444 - Winter 2020 12March 8, 2021

12

RDD Materialization

§Users control persistence and partitioning

§ Persistence
• Should we materialize this RDD in memory?

§ Partitioning
• Users can specify key for partitioning an RDD

CSE 444 - Winter 2020 13March 8, 2021

13

Let’s think about it…

§ So RDD is a lot like a view in a parallel engine

§A view that can be materialized in memory

§A materialized view that can be physically
tuned

• Tuning: How to partition for maximum performance

CSE 444 - Winter 2020 14March 8, 2021

14

3/8/21

3

Spark Programming Interface

§RDDs implemented in new Spark system

§ Spark exposes RDDs though a language-
integrated API similar to DryadLINQ but in
Scala

§ Later Spark was extended with SQL

CSE 444 - Winter 2020 15March 8, 2021

15

Why Scala?
From Matei Zaharia (Spark lead author): “When we started Spark, we
wanted it to have a concise API for users, which Scala did well. At the
same time, we wanted it to be fast (to work on large datasets), so many
scripting languages didn't fit the bill. Scala can be quite fast because it's
statically typed and it compiles in a known way to the JVM. Finally,
running on the JVM also let us call into other Java-based big data
systems, such as Cassandra, HDFS and HBase.

Since we started, we've also added APIs in Java (which became much
nicer with Java 8) and Python”

https://www.quora.com/Why-is-Apache-Spark-implemented-in-Scala

CSE 444 - Winter 2020 16March 8, 2021

16

Querying/Processing RDDs

§ Programmer first defines RDDs through
transformations on data in stable storage

• Map
• Filter
• …

§ Then, can use RDDs in actions
• Action returns a value to app or exports to storage
• Count (counts elements in dataset)
• Collect (returns elements themselves)
• Save (output to stable storage)

CSE 444 - Winter 2020 17March 8, 2021

17

Example (from paper)

Search logs stored in HDFS

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(_.startsWith(“Error”))
errors.persist()
errors.collect()
errors.filter(_.contains(“MySQL”)).count()

CSE 444 - Winter 2020 18March 8, 2021

18

3/8/21

4

More on Programming Interface

§ Large set of pre-defined transformations:
• Map, filter, flatMap, sample, groupByKey,

reduceByKey, union, join, cogroup, crossProduct, …

§ Small set of pre-defined actions:
• Count, collect, reduce, lookup, and save

§ Programming Interface includes iterations

CSE 444 - Winter 2020 19March 8, 2021

19

More Complex Example

CSE 444 - Winter 2020 20

[From Zaharia12]

March 8, 2021

20

Spark Runtime

CSE 444 - Winter 2020 21

[From Zaharia12]

1) Input data in HDFS
Or other Hadoop
input source

2) User writes
driver program

3) System ships code
to workers

March 8, 2021

21

Query Execution Details

§ Lazy evaluation
• RDDs are not evaluated until an action is called

§ In memory caching
• Spark workers are long-lived processes
• RDDs can be materialized in memory in workers
• Base data is not cached in memory

CSE 444 - Winter 2020 22March 8, 2021

22

3/8/21

5

Key Challenge

§How to provide fault-tolerance efficiently?

CSE 444 - Winter 2020 23March 8, 2021

23

Fault-Tolerance Through Lineage

Represent RDD with 5 pieces of information
§A set of partitions
§A set of dependencies on parent partitions

• Distinguishes between narrow (one-to-one)
• And wide dependencies (one-to-many)

§ Function to compute dataset based on parent
§Metadata about partitioning scheme and data

placement
RDD = Distributed relation + lineage

CSE 444 - Winter 2020 24March 8, 2021

24

More Details on Execution

CSE 444 - Winter 2020 25[From Zaharia12]

Scheduler builds a DAG of
stages based on lineage
graph of desired RDD.

Pipelined execution
within stages

Synchronization barrier
with materialization
before shuffles

If a task fails, re-run it
Can checkpoint RDDs to disk

March 8, 2021

25

Latest Advances

CSE 444 - Winter 2020 26

Image from: http://spark.apache.org/

March 8, 2021

26

3/8/21

6

Where to Go From Here

§Read about the latest Hadoop developments
• YARN

§Read more about Spark
§ Learn about GraphLab/Turi
§ Learn about Impala, Flink, Myria, etc.
§… many other big data systems and tools...

§Also good to know latest cloud offering: Google,
Microsoft, and Amazon

CSE 444 - Winter 2020 27March 8, 2021

27

