Database System Internals

Intro to Parallel DBMSs

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

March 1, 2021 CSE 444 - Winter 2021 1

1

Where We Are Headed Next

= Scaling the execution of a query
* Parallel DBMS
* MapReduce
« Spark

= Scaling transactions
» Distributed transactions
* Replication

March 1, 2021 CSE 444 - Winter 2021 4

4

What We Have Already Learned

* Phase 1: Query Execution
* Data Storage and Indexing
+ Buffer management
* Query evaluation and operator algorithms
* Query optimization

* Phase 2: Transaction Processing
« Concurrency control: pessimistic and optimistic
» Transaction recovery: undo, redo, and undo/redo

* Phase 3: Parallel Processing & Distributed
Transactions

March 1, 2021 CSE 444 - Winter 2021 3

3

DATA & Al LANDSCAPE 2019

FIRSTMARK

March 1, 2021 CSE 444 - Winter 2021 5}

5

3/1/21

How to Scale the DBMS?

* Can easily replicate the web servers and the
application servers

* We cannot so easily replicate the database
servers, because the database is unique

* We need to design ways to scale up the DBMS

March 1, 2021 CSE 444 - Winter 2021

6

Building Our Parallel DBMS

Data model? Relational
(SimpleDB!)

Scaleup goal?

March 1, 2021 CSE 444 - Winter 2021

10

10

Building Our Parallel DBMS

Data model? Relational
(SimpleDB!)

9

Scaling Transactions Per Second

= OLTP: Transactions per second
“Online Transaction Processing”

» Amazon
» Facebook

= Twitter
= ... your favorite Internet application...

= Goal is to increase transaction throughput

* We will get back to this next week

March 1, 2021 CSE 444 - Winter 2021

11

n

3/1/21

Scaling Single Query Response Time

* OLAP: Query response time

“Online Analytical Processing”
» Entire parallel system answers one query
* Goal is to improve query runtime

= Use case is analysis of massive datasets

March 1, 2021

12

CSE 444 - Winter 2021

New workloads are an issue

= Big volumes, small analytics
» OLAP queries: join + group-by + aggregate
» Can be handled by today’s RDBMSs

= Big volumes, big analytics
* More complex Machine Learning, e.g. click prediction,
topic modeling, SVM, k-means
* Requires innovation - Active research area

March 1, 2021 CSE 444 - Winter 2021

14

12

14

March 1, 2021

13

Building Our Parallel DBMS

March 1, 2021

15

Volume alone is not an issue

= Relational databases do parallelize easily;
techniques available from the 80’s
+ Data partitioning
* Parallel query processing

» SQL is embarrassingly parallel

» We will learn how to do this!

CSE 444 - Winter 2021

Data model? Relational

Scaleup goal? OLAP

CSE 444 - Winter 2021

13

15

3/1/21

Building Our Parallel DBMS

March 1, 2021

)

March 1, 2021

18

Data model?
Scaleup goal?

Architecture?

Relational

OLAP

CSE 444 - Winter 2021

hared-Disk Architecture

= Only shared disks

= No contention for
memory and high

availability
= Typically 1-10 machines

Interconnection Network
(SAN + SCSI)

ORACLE
DATABASE

CSE 444 - Winter 2021

[
‘ m

Interconnection Network
(Motherboard)

Global Memory

March 1, 2021

17

Shared-Nothing Architecture

Interconnection Network
(TCP)

CSE 444 - Winter 2021

March 1, 2021

19

CSE 444 - Winter 2021

= Shared main memory and
disks

* Your laptop or desktop
uses this architecture

= Expensive to scale
= Easiest to implement on

il
chrosoﬂ‘& -

SQLServer PosigreSQL

AN

VSQLite MysaoL:

= Uses cheap, commodity
hardware

= No contention for
memory and high

availability

= Theoretically can scale
infinitely
* Hardest to implement on

teradata.

SEaK

MySQL. Cluster

Shared-Memory Architecture

174

3/1/21

3/1/21

Building Our Parallel DBMS Shared-Nothing Execution Basics

Data model? Relational = Multiple DBMS instances (= processes) also

called “nodes” execute on machines in a cluster
+ One node plays role of the coordinator

Sca|eup goa|3 OLAP + Other nodes play role of workers

» Workers execute queries
Archiiecfure? Shdred-Nofhing * Typically all workers execute the same plan

» Workers can execute multiple queries at the same time

CSE 444 - Winter 2021 March 1, 2021

CSE 444 - Winter 2021
20

21

March 1, 2021

Shared-Nothing Database Shared-Nothing Database

We will assume a system that consists of multiple We will assume a system that consists of multiple
commodity machines on a common network commodity machines on a common network

New problem: Where does the data go? New problem: Where does the data go?

The answer will influence our execution techniques

CSE 444 - Winter 2021 22 March 1, 2021 CSE 444 - Winter 2021

23

March 1, 2021

23

Option 1: Unpartitioned Table

= Entire table on just one node in the system

* Will bottleneck any query we need to run in
parallel

* We choose ﬁartitioning scheme to divide rows

among machines

March 1, 2021 CSE 444 - Winter 2021 24
o .

Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges
N nodes

A | |
m- Ry, -inf < A <= v,

A | |
Ry, Vi< A<=vy
A | |

RN, VN < A < inf

March 1, 2021 CSE 444 - Winter 2021 26

26

Option 2: Block Partitioning

Tuples are horizontally (row) partitioned by raw size
with no ordering considered N nodes

mm - ki - KN
I

BIR) - K L B(R2) = K/N

~ -
- B(Rn) = K/N

March 1, 2021 CSE 444 - Winter 2021 25

N
‘ U-]

Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes
N nodes
A || i1 = (AN
M< a2 hAPEN
Rn, 0 = h(AJ%N
March 1, 2021 CSE 444 - Winter 2021 27

27

3/1/21

Skew: The Justin Bieber Effect

* Hashing data to nodes is very good when the
attribute chosen better approximates a uniform
distribution

= Keep in mind: Certain nodes will become
bottlenecks if a poorly chosen attribute is hashed

March 1, 2021 CSE 444 - Winter 2021 28
28
Parallel Selection
SELECT *
FROM R
WHERE A = 2
Oa=2 O0a=2 0a=2
(A | | (A ... | (A .. |
2 2 ..
(A ... | (A ... | (A] |
T Node 1 2 .. Node 2 3 . Node 3
2 .. 3 .. 1 ..
March 1, 2021 CSE 444 - Winter 2021 30
30

Parallel Selection

Assume:
R is block partitioned
SELECT *
FROM R
WHERE A = 2

(A [... | (A [... | (A ... |
L Node 1 2 . Node 2 3 . Node 3
2 .. 3 .. 1 ..
March 1, 2021 CSE 444 - Winter 2021 29
29

Implicit Union

Parallel query plans implicitly union at the end

(A ... | A ... | (A ...
1 Node 1 2 . Node 2 3. Node 3
2 3 .. 1
March 1, 2021 CSE 444 - Winter 2021 31
31

3/1/21

Parallel Selection

Data-parallel! SELECT *
FROM R
WHERE A — 2
0A=2 0a=2 0a=2
(A ... | (A ... | (A ... |
2 2 ..
(A]| (A |... | (A ... |
T Node 1 2 .. Node 2 3 . Node 3
2 .. 3 .. 1
March 1, 2021 CSE 444 - Winter 2021 32
32

Parallel Selection

Compute O-A=V(R)I or O-V]<A<V2(R)
= On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes 2

A: B(R) / N block reads on each node

March 1, 2021 CSE 444 - Winter 2021 34

34

Parallel Selection

Compute GanR), or TrcacalR)
= On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes 2

A:

March 1, 2021 CSE 444 - Winter 2021 33

33

Parallel Selection

What if this query Assume:

. R is block partitioned
is not data-parallel? SELECT *
FROM R

L Node 1 2 .. Node 2 3 . Node 3

March 1, 2021 CSE 444 - Winter 2021 35

35

3/1/21

Partitioned Aggregation

Assume:
R is block partitioned

SELECT *

FROM R
GROUP BY R.A

YraA YraA Yr.A

T Node 1 2 .. Node 2 3 . Node 3
P ER -
March 1, 2021 CSE 444 - Winter 2021 36
36
Partitioned Aggregation
A :
1. Hash shuffle tuples A oariiioned
SELECT *

FROM R
GROUP BY R.A

s .~ DN .. NS v
1T .. 2 .. 3 ..

1| o A | oo 3

L Node 1 2 .. Node 2 3. Node 3

2 .. 3 .. 1
March 1, 2021 CSE 444 - Winter 2021 38
38

Partitioned Aggregation

Assume:
R is block partitioned

SELECT *

FROM R
GROUP BY R.A

e .~ DN . NS
] oo 2 .. 3 ..

I eoo 2 .. 3

L Node 1 2 . Node 2 3 . Node 3
7 ERe =
March 1, 2021 CSE 444 - Winter 2021 37
37
Partitioned Aggregation
A :
1. Hash shuffle tuples A arifioned
SELECT *

FROM R
GROUP BY R.A

March 1, 2021 CSE 444 - Winter 2021 39

39

3/1/21

Partitioned Aggregation

March 1, 2021

40

Parallel Query Execution

March 1, 2021

42

1. Hash shuffle tuples Assume:
. R is block partitioned
2. Local aggregation SELECT *
FROM R

GROUP BY R.A

CSE 444 - Winter 2021

ShuffleProducer

ShuffleConsumer

CSE 444 - Winter 2021

Parallel Query Evaluation

March 1, 2021 CSE 444 - Winter 2021 41

New operator: Shuffle

= Serves to re-shuffle data between processes
+ Handles data routing, buffering, and flow control

= Two parts: ShuffleProducer and ShuffleConsumer

* Producer:
+ Pulls data from child operator and sends to 1
consumers
* Producer acts as driver for operators below it in query
plan
= Consumer:

» Buffers input data from n producers and makes it
available to operator through getNext() interface

Parallel Query Execution

ShuffleProducer CollectProducer

ShuffleConsumer

CollectConsumer

— :
b8 Coordi
Part 2 oordinator

March 1, 2021 CSE 444 - Winter 2021

43

3/1/21

10

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
Assume:
R and S are block partitioned
SELECT *

FROM R, S
WHERE R.A = S.A

Mpa=s.4 Mpa=s.4 Mpa=s.4

March 1, 2021 CSE 444 - Winter 2021 44

44

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
Assume:
R and S are block partitioned
SELECT *

FROM R, S
WHERE R.A = S.A

Mpa=s.4 Mpa=s.a Mpa=s.4

March 1, 2021 CSE 444 - Winter 2021 46

46

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
Assume:
R and S are block partitioned
SELECT *

FROM R, S
WHERE R.A = S.A

Mpa=s.4 Mpa=s.4 Mpa=s.4

March 1, 2021 CSE 444 - Winter 2021 45

45

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

2 I . . Assume:
. Loca |oin R and S are block partitioned

SELECT *

FROM R, S
WHERE R.A = S.A

Mp.a=s.4 Mpa=s.4 Mpa=s.4

March 1, 2021 CSE 444 - Winter 2021 47

47

3/1/21

11

Multiple Shuffles

OR.a-T>100 OR.a-T.>100 OR.a-Tf>100

Machine 1 Machine 2 Machine 3
1/30ofR, S, T 1/30ofR,S, T 1/30ofR, S, T
March 1, 2021 48
48
Speedup and Scaleup
= Consider:

* Query: ya,sum(c)(R)
* Runtime: dominated by reading chunks from disk

= |If we double the number of nodes P, what is the
new running time?

= If we double both P and the size of R, what is the
new running time?

March 1, 2021 CSE 444 - Winter 2021 50

50

= With one new operator, we’ve made
SimpleDB an OLAP-ready parallel DBMS!

* Next lecture:
« Skew handling
« Algorithm refinements

March 1, 2021 CSE 444 - Winter 2021 49
49
Speedup and Scaleup

= Consider:

* Query: ya,sum(c)(R)
* Runtime: dominated by reading chunks from disk
= If we double the number of nodes P, what is the
new running time?
« Half (each server holds /2 as many chunks)

» If we double both P and the size of R, what is the
new running time?

March 1, 2021 CSE 444 - Winter 2021 51

51

3/1/21

12

Speedup and Scaleup

March 1, 2021

52

Basic Parallel GroupBy

= Consider:
* Query: ya,sum(c)(R)
* Runtime: dominated by reading chunks from disk
» If we double the number of nodes P, what is the
new running time?
* Half (each server holds "2 as many chunks)
= If we double both P and the size of R, what is the
new running time?
» Same (each server holds the same # of chunks)

CSE 444 - Winter 2021

Can we do better?
» Sum?
» Count?
- AVg? Distributive Algebraic Holistic
sum(ajtay+...+ag)= avg(B) = median(B)
- MGX? sum(sdm(é1+02+za)+ sum(B)/count(B)
H sum(astastag)t
* Median? omosresed
March 1, 2021 CSE 444 - Winter 2021

54

54

Basic Parallel GroupBy

Can we do better?
* Sum?

* Count?

= Avg?

* Max?

* Median?

March 1, 2021

53

Basic Parallel GroupBy

Can we do better?

CSE 444 - Winter 2021

* Sum?

= Count?

- AVg? Distributive Algebraic Holistic
" Max? ::m:}:(:é?lé::gm vgs(l.?r)n(=B)/counf(B) median(®)
* Median? omioasiedy

YES

= Compute partial aggregates before shuffling

March 1, 2021

55

CSE 444 - Winter 2021

55

3/1/21

13

Basic Parallel GroupBy

Can we do better?

*Sum?

» Count?

. Avg? Distributive Algebraic Holistic
" Max? omisomiariorcans | * homis)/coune) | "
" Median? omfossesedy

YES

= Compute partial aggregates before shuffling

{ MapReduce implements this as “Combiners” }
March 1, 2021 CSE 444 - Winter 2021 56
56

Without Combiners

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

58

Exercise (www.draw.io is fast!)

Example Query with Group By

SELECT a, max(b) as topb
FROM R WHERE a >0

GROUP BY a
Machine 1 Machine 2 Machine 3
1/3 of R 1/3 of R 1/3 of R

57

With Cnmbiners

>’<§
G on>

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

59

3/1/21

14

http://www.draw.io/

Parallel Join: R x5 S

* Data: R(K1,A, C), S(K2, B, D)
* Query: R(K1,A,C) « S(K2,B,D)

March 1, 2021 CSE 444 - Winter 2021 60
60
Parallel Join: R -5 S

= Step 1

* Every server holdin? any chunk of R partitions its
chunk using a hash function h(t.A) mod P

« Every server holding any chunk of S partitions its
chunk using a hash function h(t.B) mod P

= Step 2:
* Each server computes the join of its local fragment of R
with its local fragment of S

March 1, 2021 CSE 444 - Winter 2021 64

64

Parallel Join: R -5 S

= Data: R(K1,A, C), S(K2, B, D)
* Query: R(K1,A,C) x S(K2,B,D)

Each server computes
the join locally

Reshuffle R on R.A
and S on S.B

Initially, both R and S are horizontally partitioned on K1 and K2

March 1, 2021 CSE 444 - Winter 2021 63

63

Optimization for Small Relations

When joining R and S
“If IR| >>|§]

* Leave R where it is
* Replicate entire S relation across nodes

= Also called a small join or a broadcast join

March 1, 2021 CSE 444 - Winter 2021 66

66

3/1/21

15

Broadcast Join Example

OR.a-Tf>100 OR.a-Tf>100

Machine 1 Machine 2 Machine 3

1/3 of R. S 1/3 of R. S 1/3 of R. S
Can save huge network costs!

67

Some Skew Handling Techniques

If using range partition:
= Ensure each range gets same number of tuples
= Eg.:{1,1,1,2,3,4,5 6}>[1,2] and [3,6]

» Eqg-depth v.s. eq-width histograms

March 1, 2021 CSE 444 - Winter 2021 69

69

Justin Biebers Re-visited

Skew:

= Some partitions get more input tuples than others
Reasons:
* Range-partition instead of hash
+ Some values are very popular:
* Heavy hitters values; e.g. ‘Justin Bieber’
« Selection before join with different selectivities

= Some partitions generate more output tuples than
others

March 1, 2021 CSE 444 - Winter 2021 68

68

Some Skew Handling Techniques

Create more partitions than nodes

* And be smart about scheduling the partitions
+ E.g. One node ONLY does Justin Biebers

* Note: MapReduce uses this technique

March 1, 2021 CSE 444 - Winter 2021 70

70

3/1/21

16

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
»Given R x5 S

= Given a heavy hitter value R.A =
(i.e. ‘v’ occurs very many times in R)

= Partition R tuples with value ‘v’ across all nodes
e.g. block-partition, or hash on other attributes

= Replicate S tuples with value ‘v’ to all nodes
= R = the build relation
= S = the probe relation

March 1, 2021 CSE 444 - Winter 2021 71

71

Query Execution
Order(gid, item, date), Line(item, ...)

date = today()

(scan) order o

AMP 1 AMP 2 AMP 3
h(o.item) h(o.item) h(o.item)
CeelecD Cselec
date=today() date=today() date=today()
Order o) Order o Order o
AMP 1 AMP 2 AMP 3
March 1, 2021 CSE 444 - Winter 2021 73

73

Example: Teradqta - Query Execution

Order(gid, item, date), Line(item, .

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i

WHERE o.item = i.item ‘

o.item = i.item

AND o.date today ()

March 1, 2021 CSE 444 - Winter 2021 72

72

Query Execution

March 1, 2021 CSE 444 - Winter 2021 74

74

3/1/21

17

3/1/21

Order(gid, item, date), Line(item, ...)

o.item = i.item o.item = i.item o.item = i.item
SELECT *

AMP 1 AMP 2 AMP 3 FROMR, S, T

WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100
mrders and all

lines where hash(item) = 3

Example 2

contains all orders and all
lines where hash(item) = 2

contains all orders and all Machine 1 Machine 2 Machine 3
lines where hash(item) =1
1/3 ofR, S, T 1/3ofR, S, T 1/3 ofR, S, T
March 1, 2021 CSE 444 - Winter 2021 75 March 1, 2021 CSE 444 - Winter 2021 76

75

OR.a-Tf>100 OR.a-T£>100 OR.a-T.>100 OR.a-Tf>100 OR.a-Tf>100 OR.a-Tf>100

Machine 1 Machine 2 Machine 3 Machine 1 Machine 2 Machine 3
1/30ofR, S, T 1/30ofR, S, T 1/3ofR, S, T 1/3ofR, S, T 1/30ofR, S, T 1/3ofR, S, T
March 1, 2021 CSE 444 Winfer 2021 77 March 1, 2021 CSE 444 - Winer 2021 78
77 78

18

