

Where We Are Headed Next

- Scaling the execution of a query
 - Parallel DBMS
 - MapReduce
 - Spark
- Scaling transactions
 - · Distributed transactions
 - Replication

March 1, 2021 CSE 444 - Winter 202

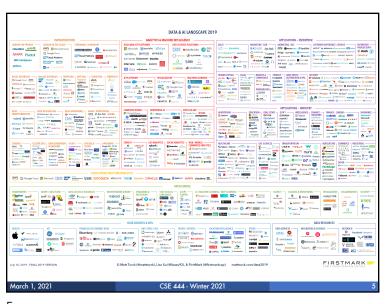
4

What We Have Already Learned

- Phase 1: Query Execution
 - Data Storage and Indexing
 - Buffer management
 - · Query evaluation and operator algorithms
 - Query optimization
- Phase 2: Transaction Processing
 - Concurrency control: pessimistic and optimistic
 - Transaction recovery: undo, redo, and undo/redo
- Phase 3: Parallel Processing & Distributed Transactions

March 1, 202

CSE 444 - Winter 2021



How to Scale the DBMS?

- Can easily replicate the web servers and the application servers
- We cannot so easily replicate the database servers, because the database is unique
- We need to design ways to scale up the DBMS

March 1, 2021

CSE 444 - Winter 2021

6

Building Our Parallel DBMS

Data model?

Relational (SimpleDB!)

Scaleup goal?

CSE 444 - Winter 2021

Building Our Parallel DBMS

Data model?

Relational

(SimpleDB!)

Scaling Transactions Per Second

CSE 444 - Winter 2021

- OLTP: Transactions per second "Online Transaction Processing"
- Amazon
- Facebook
- Twitter
- ... your favorite Internet application...
- Goal is to increase transaction throughput
- We will get back to this next week

March 1, 20

11

CSE 444 - Winter 2021

Scaling Single Query Response Time

- OLAP: Query response time "Online Analytical Processing"
- Entire parallel system answers one query
- Goal is to improve query runtime
- Use case is analysis of massive datasets

March 1, 2021

CSE 444 - Winter 2021

12

Big Data

New workloads are an issue

- Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today's RDBMSs
- Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation Active research area

March 1, 2021

14

CSE 444 - Winter 2021

Big Data

Volume alone is not an issue

- Relational databases do parallelize easily; techniques available from the 80's
 - Data partitioning
 - Parallel query processing
- SQL is embarrassingly parallel
 - · We will learn how to do this!

March 1, 2021

CSE 444 - Winter 2021

13

Building Our Parallel DBMS

Data model? Relational

Scaleup goal? OLAP

15

Building Our Parallel DBMS

Data model? Relational

Scaleup goal? OLAP

Architecture?

March 1, 2021 CSE 444 - Winter 2021

Shared-Disk Architecture

Only shared disks
No contention for memory and high availability
Typically 1-10 machines

ORACLE
DATABASE

Shared-Memory Architecture

Shared main memory and disks

Your laptop or desktop uses this architecture

Expensive to scale

Easiest to implement on

Global Memory

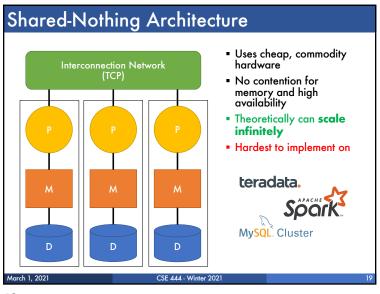
D

D

CSE 444- Winter 2021

17

17



18

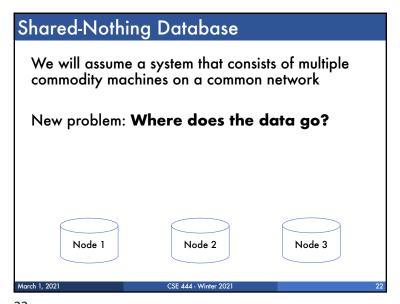
16

Data model? Relational Scaleup goal? OLAP Architecture? Shared-Nothing

CSE 444 - Winter 2021

20

March 1, 2021

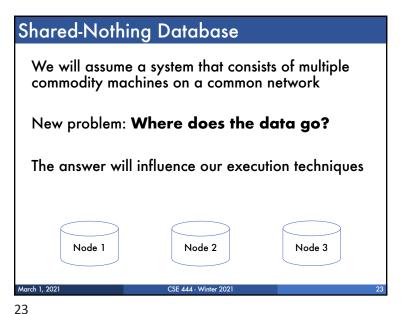


Shared-Nothing Execution Basics

Multiple DBMS instances (= processes) also called "nodes" execute on machines in a cluster
One node plays role of the coordinator
Other nodes play role of workers

Workers execute queries
Typically all workers execute the same plan
Workers can execute multiple queries at the same time

21



22

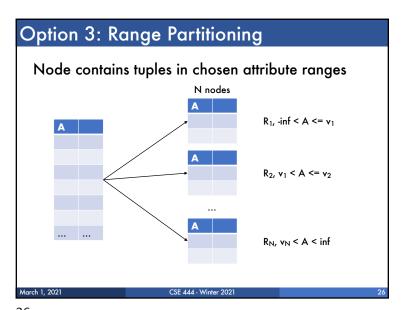
Option 1: Unpartitioned Table

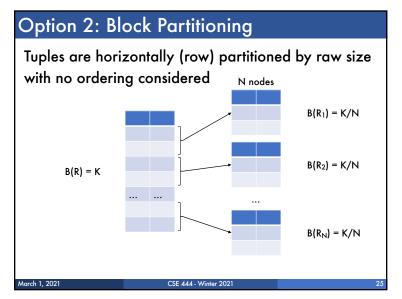
- Entire table on just one node in the system
- Will bottleneck any query we need to run in parallel
- We choose partitioning scheme to divide rows among machines

CSE 444 - Winter 2021

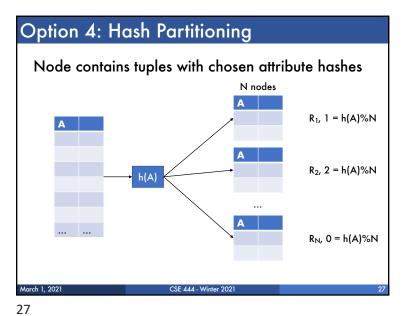
24

March 1, 2021





25

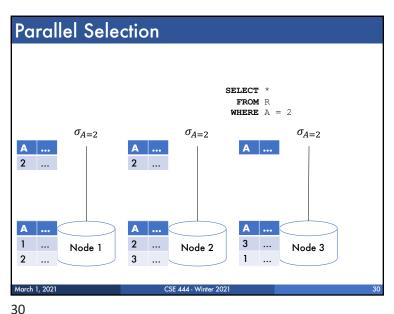


Skew: The Justin Bieber Effect

- Hashing data to nodes is very good when the attribute chosen better approximates a uniform distribution
- Keep in mind: Certain nodes will become bottlenecks if a poorly chosen attribute is hashed

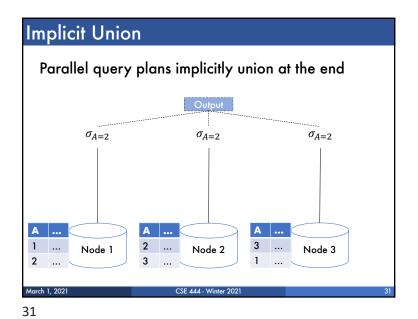
March 1, 2021 CSE 444 - Winter 2021

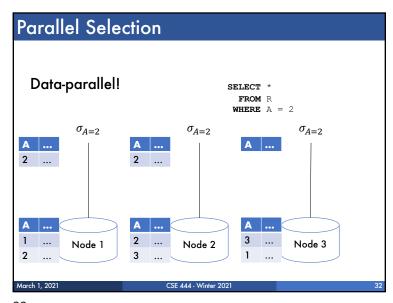
28

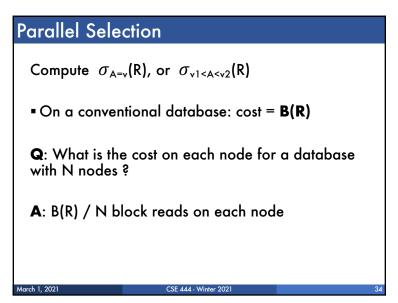


Parallel Selection Assume: R is block partitioned SELECT * FROM R WHERE A = 22 ... 3 ... Node 1 Node 2 Node 3 CSE 444 - Winter 2021

29



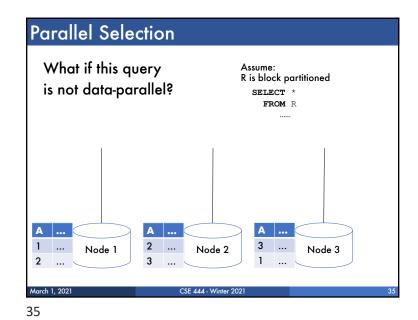


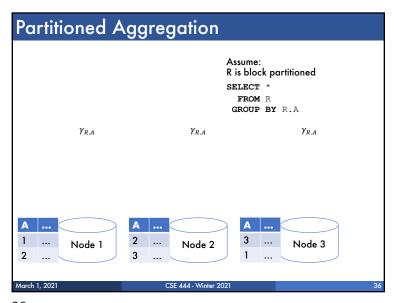


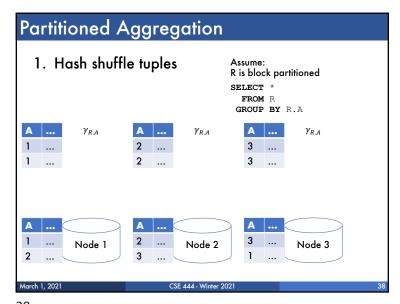
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$ On a conventional database: cost = $\mathbf{B}(\mathbf{R})$ Q: What is the cost on each node for a database with N nodes?

A:

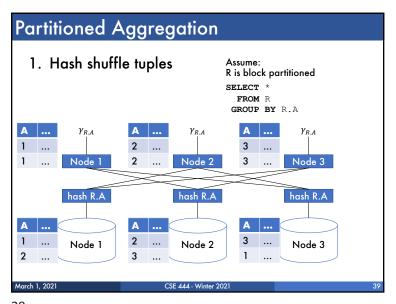




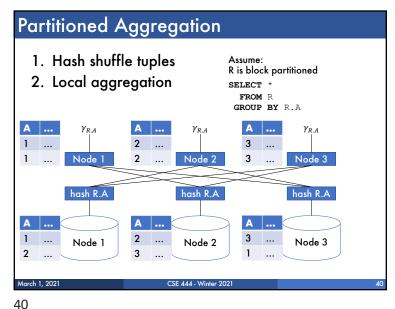


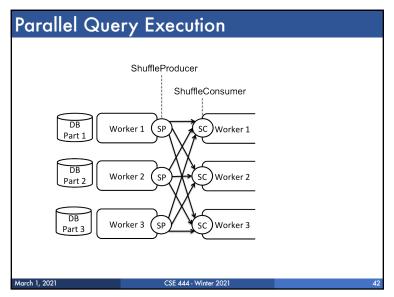
Partitioned Aggregation Assume: R is block partitioned SELECT * FROM R GROUP BY R.A $\gamma_{R.A}$ $\gamma_{R.A}$ $\gamma_{R.A}$ 2 ... 3 ... 2 ... 3 ... 2 ... 3 ... Node 1 Node 2 Node 3 March 1, 2021 CSE 444 - Winter 2021

37



38





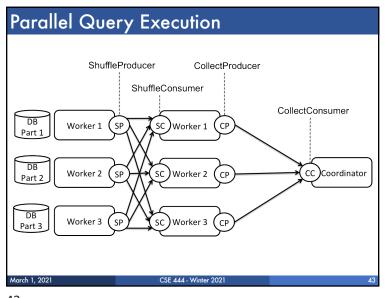
Parallel Query Evaluation

New operator: Shuffle

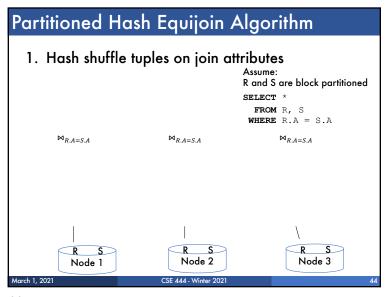
- Serves to re-shuffle data between processes
 - Handles data routing, buffering, and flow control
- Two parts: ShuffleProducer and ShuffleConsumer
- Producer:
 - ullet Pulls data from child operator and sends to n
 - Producer acts as driver for operators below it in query plan
- Consumer:
 - Buffers input data from n producers and makes it available to operator through getNext() interface

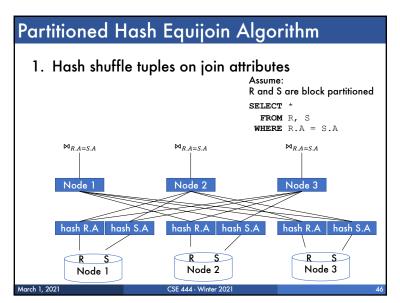
March 1, 2021 CSE 444 - Winter 2021

41



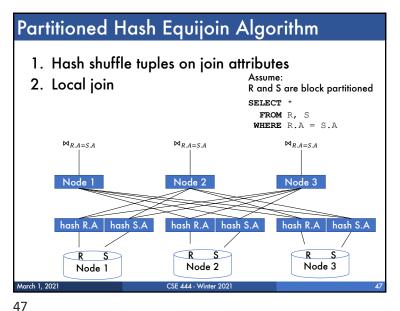
42





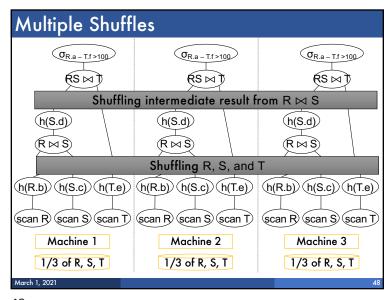
Partitioned Hash Equijoin Algorithm 1. Hash shuffle tuples on join attributes R and S are block partitioned SELECT * FROM R, S WHERE R.A = S.A $\bowtie_{R.A=S.A}$ $\bowtie_{R.A=S.A}$ $\bowtie_{R.A=S.A}$ Node 1 Node 2 Node 3 hash R.A hash R.A hash R.A R Node 3 Node 2 Node 1 CSE 444 - Winter 2021 March 1, 2021

45



46

.,



Speedup and Scaleup

- Consider:
 - Query: γ_{A,sum(C)}(R)
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both P and the size of R, what is the new running time?

COL 444 - William 202

Summary

- ■With one new operator, we've made SimpleDB an OLAP-ready parallel DBMS!
- Next lecture:
 - Skew handling
 - Algorithm refinements

March 1, 2021

49

Speedup and Scaleup

- Consider:
 - Query: γ_{A,sum(C)}(R)
 - Runtime: dominated by reading chunks from disk

CSE 444 - Winter 2021

- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?

March 1, 20:

SE 444 - Winter 2021

50

Speedup and Scaleup

- Consider:
 - Query: γ_{A,sum(C)}(R)
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds 1/2 as many chunks)
- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

March 1, 2021 CSE 444 - Winter 2021

52

Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max[§]
- Median?

Distributive	Algebraic	Holistic
$\begin{array}{c} sum(a_1+a_2++a_9) = \\ sum(sum(a_1+a_2+a_3) + \\ sum(a_4+a_5+a_6) + \\ sum(a_7+a_8+a_9)) \end{array}$	avg(B) = sum(B)/count(B)	median(B)

Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max§
- Median?

March 1, 2021 CSE 444 - Winter 2021 53

53

Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

YES

Compute partial aggregates before shuffling

Distributive

 $sum(a_1+a_2+...+a_9)=$

 $sum(sum(a_1+a_2+a_3)+$

 $sum(a_4+a_5+a_6)+sum(a_7+a_8+a_9))$

Algebraic

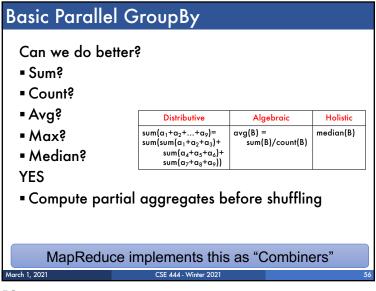
sum(B)/count(B)

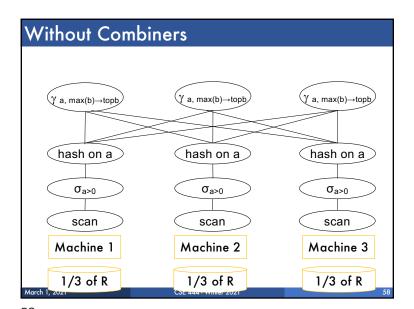
avg(B) =

Holistic

median(B)

March 1, 2021 CSE 444 - Winter 2021 55





Exercise (www.draw.io is fast!)

Example Query with Group By

SELECT a, max(b) as topb
FROM R WHERE a > 0
GROUP BY a

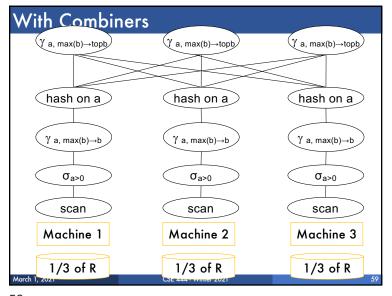
Machine 1

Machine 2

Machine 3

1/3 of R

1/3 of R



Parallel Join: $R \bowtie_{A=B} S$

- Data: R(K1,A, C), S(K2, B, D)
- Query: $R(\underline{K1},A,C) \bowtie S(\underline{K2},B,D)$

March 1, 2021

Parallel Join: $R \bowtie_{A=B} S$

- Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A) mod P

CSE 444 - Winter 2021

- Every server holding any chunk of S partitions its chunk using a hash function h(t.B) mod P
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

March 1, 2021 CSE 444 - Winter 2021 64

Parallel Join: $R \bowtie_{A=B} S$ ■ Data: R(K1,A,C), S(K2, B, D) • Query: $R(K1,A,C) \bowtie S(K2,B,D)$ R'2, S'2 R'₁, S'₁ R'P, S'P Each server computes the join locally Reshuffle R on R.A and S on S.B R_P, S_P R₁, S₁ R₂, S₂ Initially, both R and S are horizontally partitioned on K1 and K2 March 1, 2021 CSE 444 - Winter 2021

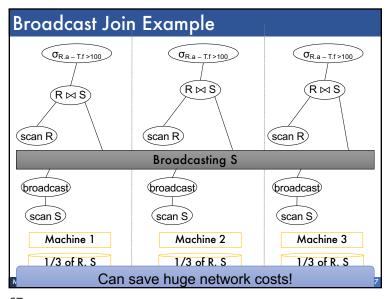
63

Optimization for Small Relations

When joining R and S

- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

March 1, 2021 CSE 444 - Winter 20



Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: {1, 1, 1, 2, 3, 4, 5, 6} → [1,2] and [3,6]
- Eq-depth v.s. eq-width histograms

March 1, 2021 CSE 444 - Winter 202

Justin Biebers Re-visited

Skew:

- Some partitions get more input tuples than others Reasons:
 - Range-partition instead of hash
 - Some values are very popular:
 - · Heavy hitters values; e.g. 'Justin Bieber'
 - · Selection before join with different selectivities
- Some partitions generate more output tuples than others

March 1, 2021

CSE 444 - Winter 2021

68

Some Skew Handling Techniques

Create more partitions than nodes

- And be smart about scheduling the partitions
 - E.g. One node ONLY does Justin Biebers
- Note: MapReduce uses this technique

March 1, 20

SE 444 - Winter 2021

69

Some Skew Handling Techniques

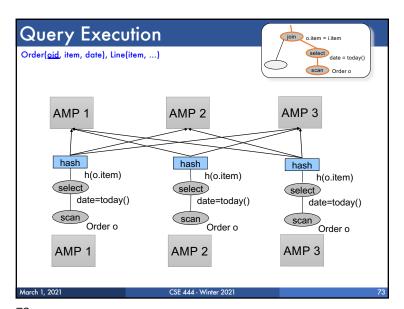
Use subset-replicate (a.k.a. "skewedJoin")

- Given R ⋈_{A=B} S
- Given a heavy hitter value R.A = 'v' (i.e. 'v' occurs very many times in R)
- Partition R tuples with value 'v' across all nodes e.g. block-partition, or hash on other attributes
- Replicate S tuples with value 'v' to all nodes
- R = the build relation
- S = the probe relation

March 1, 2021

CSE 444 - Winter 2021

71



Example: Teradata - Query Execution

Order(oid, item, date), Line(item, ...)

Find all orders from today, along with the items ordered

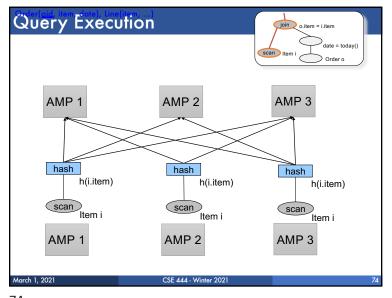
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

March 1, 2021

CSE 444 - Winter 2021

72

72



73

