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Database System Internals

Transactions: Recovery (part 3

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle
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Announcements

= HW 5 released, due March 2

= L ab 4 out tonight
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Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity
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No-Force/Steal  (least strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures
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Write-Ahead Log (WAL)

The Log: append-only file containing log records

= Records every single action of every TXN
= Forces log entries to disk as needed

= After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log
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Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log
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Action ¢t | MemA |M-——"~~+a | DiskB | REDO Log
When must <START T>
READ(A 3 g\ we force pages /g
to disk ?
t=tr 16 8 8
WRITEAL | 16 16 8 8 <TA,16>
READBH | 8 16 8 8 8
b=t 16 16 8 8 8 @)
I
WRITEBH | 16 16 16 8 8 <TB.16>
COMMIT <COMMIT T>
ouTPUT(A) | 16 16 16 16 8
OUTFMT(B)E?/ 16 16 16 16 16

February 24, 2021
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Action t MemA | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8 <T,B.16>
COMMIT <COMMIT ﬁ
@TPUT(A) 16 6 | 16 | 46— 8 |
OUTPUT(B) 16 16 16 16
RULE: OUTPUT after COMMIT NO-STEAL
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Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

» Hence: OUTPUTSs are done late

NO-STEAL
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Comparison Undo/Redo

» Undo |Qgg|ng Steal/Force
« OUTPUT must be done early

 If <COMMIT T> is seen, T definitely has written all its data to disk
(hence, don’t need to redo) - inefficient

= Redo logging
« OUTPUT must be done late No-Steal/No-Force

 If <COMMIT T> is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to
undo) - inflexible

*» Would like more flexibility on when to OUTPUT:
undo/redo logging (next{

Steal/No-Force
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Undo/Redo Logging

Log records, only one change

= <T,X,u,v>=T has updated element X, its old
value was u, and its new value is v
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Undo/Redo-Logging Rule

URT: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative
to <COMMIT T>

February 24, 2021



Action T MemA | Mem B | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want; before/after COMMIT
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Recovery with Undo/Redo Log

After system’s crash, run recovery manager
= Redo all committed transaction, top-down
= Undo all uncommitted transactions, bottom-up
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Recovery with Undo/Redo Log

<START T1> 1
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
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ARIES

Undo/Redo protocol
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= ARIES pieces together several techniques into a
comprehensive algorithm

= Developed at IBM Almaden, by Mohan
= IBM botched the patent, so everyone uses it now

= Several variations, e.g. for distributed
transactions
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ARIES Recovery Manager

Log entries:
= <START T> - when T begins

= Update: <T,X,u,v>
* T updates X, old value=u, new value=v
* Logical description of the change

» <COMMIT T> or <ABORT T> then <END>
» <CLR> - we'll talk about them later.
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ARIES Recovery Manager

Rule:

= [f T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits
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LSN = Log Sequence Number

*LSN = identifier of a log entry

* Log entries belonging to the same TXN are linked with
extra entry for previous LSN

»Each page contains a pageLSN:
* LSN of log record for latest update to that page
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ARIES Data Structures

* Active Transactions Table
* Lists all active TXN’s
* For each TXN: lastLSN = its most recent update LSN

* Dirty Page Table

« Lists all dirty pages

 For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

= Write Ahead Log
* LSN, prevLSN = previous LSN for same txn
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Data Structures

Dirty pages
pagelD recLSN
PS5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

February 24, 2021

Log (WAL)
LSN | prevLSN |transiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 102 T200 P6
104 1101 T100 P5

Buffer Pool
P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101
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ARIES Normal Operation

T writes page P
» What do we do ?
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ARIES Normal Operation

T writes page P
» What do we do ?

* Write <T,P,u,v> in the Log
 pageLSN=LSN
 prevLSN=lastLSN

* |lastLSN=LSN

* recLSN-=if isNull then LSN

February 24, 2021 CSE 444 - Winter 2021
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ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* \What do we do ?

Buffer manager wants INPUT(P)
= \What do we do ?
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ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* \What do we do ?

February 24, 2021 CSE 444 - Winter 2021
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ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

» Create entry in Dirty Pages table
recLSN = NULL

February 24, 2021 CSE 444 - Winter 2021
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ARIES Normal Operation

Transaction T starts
= \What do we do ?

Transaction T commits/aborts
= \What do we do ?
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ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

= New entry T in Active TXN;
lastLSN = null

Transaction T commits
= \What do we do ?
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ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

= New entry T in Active TXN;
lastLSN = null

Transaction T commits
* Write <COMMIT T> in the log

* Flush log up to this entry
= Write <END>

February 24, 2021 CSE 444 - Winter 2021
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Checkpoints

Write into the log

» Entire active transactions table
= Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk
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ARIES Recovery

1. Analysis pass
« Figure out what was going on at time of crash
« List of dirty pages and active transactions

2. Redo pass (repeating history principle)
« Redo all operations, even for transactions that will not commit
« Get back to state at the moment of the crash

3. Undo pass

 Remove effects of all uncommitted transactions
 Log changes during undo in case of another crash during undo
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ARIES Method lllustration

Start of oldest First update , , .

in—progress potentially Checkpoint End of Log

transaction lost during crash

--.-| ---------------------------- l ---------------------------------------------------------- l- Log (time —®|
et Analysis
. Redo

- o Undo
Qﬂr 3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
in reverse order

[Figure 3 from Franklin97]
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1. Analysis Phase

» Goal
« Determine point in log where to start REDO

« Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

+ |dentify active transactions when crashed

* Approach
« Rebuild active transactions table and dirty pages table
« Reprocess the log from the checkpoint
* Only update the two data structures
« Compute: firstLSN = smallest of all recoveryLSN
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1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN= ?7?

Where do we start
the REDO phase ?

Dirty

pages pagelD |recLSN
Active transID | lastLSN
txn
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1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN=min(recLSN)

Dirty

pages pagelD |recLSN
Active transID | lastLSN
txn
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1. Analysis Phase

Log Checkpoint (crash)
firstLSN
Dirty Replay r+~-—-—-——-———7-———————
play r T |
pages pagelD | recLSN history :LEEQG_'_D_H‘EE':S_N_!
| | |
F—————- t-——————— |
I I I
| l
Active transID | lastLSN (S Fe—————— |
txn  transID | lastLSN |
| | |
F—————— F————— |
: I
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2. Redo Phase

Main principle: replay history

= Process Log forward, starting from firstLSN
= Read every log record, sequentially

= Redo actions are not recorded in the log

= Needs the Dirty Page Table
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2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
» Redo the action P=u and WRITE(P)
* Only redo actions that need to be redone
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2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* |f P is not in Dirty Page then no update
* |[f recLSN > LSN, then no update

» Read page from disk:
f pageLSN >= LSN, then no update

= Otherwise perform update
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2. Redo Phase: Detalls

What happens if system crashes during REDO ?
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2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again ! The pageLSN will ensure that
we do not reapply a change twice
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3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

February 24, 2021 CSE 444 - Winter 2021



3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

* We can only undo only the loser transactions

 Need to support ROLLBACK: selective undo, for one
transaction
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3. Undo Phase

Main principle: “logical” undo
= Start from end of Log, move backwards
= Read only affected log entries

= Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

= CLRs are redone, but never undone
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3. Undo Phase: Detalls

= “|_ oser transactions” = uncommitted
transactions in Active Transactions Table

= ToUndo = set of lastLSN of loser transactions
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3. Undo Phase: Detalls

While ToUndo not empty:

= Choose most recent (largest) LSN in ToUndo

= If LSN = regular record <T,P,u,v>:

* Write a CLR where CLR.undoNextLSN = LSN.prevLSN
* Undo v

» [f LSN = CLR record:

« Don’t undo !

= if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log
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Write Write Write JZ#27% CLR FOR CLR FOR #ZZZ0/# CLR FOR
page 1 page 1 page 1 g™ LSN 30  LSN 20 wggggzs LEN 10
& \
Log (time —®) ....I ................ | .............. .l. .............................. R (a,( ......................... (,, ......
Z %z %
LSN: 10 20 30 Restart 40 50 Restart

5 60
p -

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]
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3. Undo Phase: Detalls

What happens if system crashes during UNDOQO 7
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3. Undo Phase: Detalls

What happens if system crashes during UNDOQO 7

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo
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