Sessionld

NumberOfsession

Date
X1 [Exparimentin

f Setup

lation Trial

—_—

ANAN

2l

nnnnn

=]

\
&

g

Worker 3

¥
r
i

O — 3

(a) Traditional parallel query plan

I~
R

s,
[riat_tas_rrajectory &

N

S —
| vt w1 [Tiain a.
#x2 | Timecoursetn 2 |Trajectoryid o
1 1 Podnck 053 N .
KeyeShae'
Timecourse [ratectory
JoffreMargaeryzn,

% | Timecoursein P | Tesjectoryin Myrosiia Gregor

Frequency Frequency £

SegmentiD SegmentiD Meryn,

KindOfata KindOfData iyn

Nerames MarkerD
\ g NFrames gl ube shuffle-based parallel g

k [

Database System Internals

Transactions: Recovery (part 3

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 24, 2021 CSE 444 - Winter 2021 1

Announcements

= HW 5 released, due March 2

= L ab 4 out tonight

February 24, 2021 CSE 444 - Winter 2021

Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 24, 2021 CSE 444 - Winter 2021 3

No-Force/Steal (least strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 24, 2021 CSE 444 - Winter 2021

Write-Ahead Log (WAL)

The Log: append-only file containing log records

= Records every single action of every TXN
= Forces log entries to disk as needed

= After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 24, 2021 CSE 444 - Winter 2021

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 24, 2021 CSE 444 - Winter 2021)

Action ¢t | MemA |M-——"~~+a | DiskB | REDO Log
When must <START T>
READ(A 3 g\ we force pages /g
to disk ?
t=tr 16 8 8
WRITEAL | 16 16 8 8 <TA,16>
READBH | 8 16 8 8 8
b=t 16 16 8 8 8 @)
I
WRITEBH | 16 16 16 8 8 <TB.16>
COMMIT <COMMIT T>
ouTPUT(A) | 16 16 16 16 8
OUTFMT(B)E?/ 16 16 16 16 16

February 24, 2021

CSE 444 - Winter 2021

Action t MemA | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8 <T,B.16>
COMMIT <COMMIT ﬁ
@TPUT(A) 16 6 | 16 | 46— 8 |
OUTPUT(B) 16 16 16 16
RULE: OUTPUT after COMMIT NO-STEAL

February 24, 2021 CSE 444 - Winter 2021

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

» Hence: OUTPUTSs are done late

NO-STEAL

February 24, 2021 CSE 444 - Winter 2021

Comparison Undo/Redo

» Undo |Qgg|ng Steal/Force
« OUTPUT must be done early

 If <COMMIT T> is seen, T definitely has written all its data to disk
(hence, don’t need to redo) - inefficient

= Redo logging
« OUTPUT must be done late No-Steal/No-Force

 If <COMMIT T> is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to
undo) - inflexible

*» Would like more flexibility on when to OUTPUT:
undo/redo logging (next{

Steal/No-Force

February 24, 2021

Undo/Redo Logging

Log records, only one change

= <T,X,u,v>=T has updated element X, its old
value was u, and its new value is v

February 24, 2021

Undo/Redo-Logging Rule

URT: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative
to <COMMIT T>

February 24, 2021

Action T MemA | Mem B | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want; before/after COMMIT

February 24, 2021 CSE 444 - Winter 2021 14

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
= Redo all committed transaction, top-down
= Undo all uncommitted transactions, bottom-up

February 24, 2021

Recovery with Undo/Redo Log

<START T1> 1
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

February 24, 2021

ARIES

Undo/Redo protocol

February 24, 2021 CSE 444 - Winter 2021 17

= ARIES pieces together several techniques into a
comprehensive algorithm

= Developed at IBM Almaden, by Mohan
= IBM botched the patent, so everyone uses it now

= Several variations, e.g. for distributed
transactions

February 24, 2021 CSE 444 - Winter 2021 18

ARIES Recovery Manager

Log entries:
= <START T> - when T begins

= Update: <T,X,u,v>
* T updates X, old value=u, new value=v
* Logical description of the change

» <COMMIT T> or <ABORT T> then <END>
» <CLR> - we'll talk about them later.

February 24, 2021 CSE 444 - Winter 2021

ARIES Recovery Manager

Rule:

= [f T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

February 24, 2021 CSE 444 - Winter 2021

LSN = Log Sequence Number

*LSN = identifier of a log entry

* Log entries belonging to the same TXN are linked with
extra entry for previous LSN

»Each page contains a pageLSN:
* LSN of log record for latest update to that page

February 24, 2021 CSE 444 - Winter 2021

ARIES Data Structures

* Active Transactions Table
* Lists all active TXN’s
* For each TXN: lastLSN = its most recent update LSN

* Dirty Page Table

« Lists all dirty pages

 For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

= Write Ahead Log
* LSN, prevLSN = previous LSN for same txn

February 24, 2021 CSE 444 - Winter 2021 24

Data Structures

Dirty pages
pagelD recLSN
PS5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

February 24, 2021

Log (WAL)
LSN | prevLSN |transiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 102 T200 P6
104 1101 T100 P5

Buffer Pool
P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

CSE 444 - Winter 20

ARIES Normal Operation

T writes page P
» What do we do ?

February 24, 2021 CSE 444 - Winter 2021

ARIES Normal Operation

T writes page P
» What do we do ?

* Write <T,P,u,v> in the Log
 pageLSN=LSN
 prevLSN=lastLSN

* |lastLSN=LSN

* recLSN-=if isNull then LSN

February 24, 2021 CSE 444 - Winter 2021

27

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* \What do we do ?

Buffer manager wants INPUT(P)
= \What do we do ?

February 24, 2021 CSE 444 - Winter 2021

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* \What do we do ?

February 24, 2021 CSE 444 - Winter 2021

29

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

» Create entry in Dirty Pages table
recLSN = NULL

February 24, 2021 CSE 444 - Winter 2021

30

ARIES Normal Operation

Transaction T starts
= \What do we do ?

Transaction T commits/aborts
= \What do we do ?

February 24, 2021 CSE 444 - Winter 2021

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

= New entry T in Active TXN;
lastLSN = null

Transaction T commits
= \What do we do ?

February 24, 2021 CSE 444 - Winter 2021

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

= New entry T in Active TXN;
lastLSN = null

Transaction T commits
* Write <COMMIT T> in the log

* Flush log up to this entry
= Write <END>

February 24, 2021 CSE 444 - Winter 2021

33

Checkpoints

Write into the log

» Entire active transactions table
= Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

February 24, 2021 CSE 444 - Winter 2021

ARIES Recovery

1. Analysis pass
« Figure out what was going on at time of crash
« List of dirty pages and active transactions

2. Redo pass (repeating history principle)
« Redo all operations, even for transactions that will not commit
« Get back to state at the moment of the crash

3. Undo pass

 Remove effects of all uncommitted transactions
 Log changes during undo in case of another crash during undo

February 24, 2021 CSE 444 - Winter 2021 36

ARIES Method lllustration

Start of oldest First update , , .

in—progress potentially Checkpoint End of Log

transaction lost during crash

--.-| ---------------------------- l -- l- Log (time —®|
et Analysis
. Redo

- o Undo
Qﬂr 3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
in reverse order

[Figure 3 from Franklin97]

February 24, 2021 CSE 444 - Winter 2021 37

1. Analysis Phase

» Goal
« Determine point in log where to start REDO

« Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

+ |dentify active transactions when crashed

* Approach
« Rebuild active transactions table and dirty pages table
« Reprocess the log from the checkpoint
* Only update the two data structures
« Compute: firstLSN = smallest of all recoveryLSN

February 24, 2021 CSE 444 - Winter 2021 38

1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN= ?7?

Where do we start
the REDO phase ?

Dirty

pages pagelD |recLSN
Active transID | lastLSN
txn

February 24, 2021 CSE 444 - Winter 2021 39

1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN=min(recLSN)

Dirty

pages pagelD |recLSN
Active transID | lastLSN
txn

February 24, 2021 CSE 444 - Winter 2021 40

1. Analysis Phase

Log Checkpoint (crash)
firstLSN
Dirty Replay r+~-—-—-——-———7-———————
play r T |
pages pagelD | recLSN history :LEEQG_'_D_H‘EE':S_N_!
| | |
F—————- t-——————— |
I I I
| l
Active transID | lastLSN (S Fe—————— |
txn transID | lastLSN |
| | |
F—————— F————— |
: I

February 24, 2021 CSE 444 - Winter 2021 41

2. Redo Phase

Main principle: replay history

= Process Log forward, starting from firstLSN
= Read every log record, sequentially

= Redo actions are not recorded in the log

= Needs the Dirty Page Table

February 24, 2021 CSE 444 - Winter 2021

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
» Redo the action P=u and WRITE(P)
* Only redo actions that need to be redone

February 24, 2021 CSE 444 - Winter 2021 43

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* |f P is not in Dirty Page then no update
* |[f recLSN > LSN, then no update

» Read page from disk:
f pageLSN >= LSN, then no update

= Otherwise perform update

February 24, 2021 CSE 444 - Winter 2021

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

February 24, 2021 CSE 444 - Winter 2021 45

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again ! The pageLSN will ensure that
we do not reapply a change twice

February 24, 2021 CSE 444 - Winter 2021 46

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

February 24, 2021 CSE 444 - Winter 2021

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

* We can only undo only the loser transactions

 Need to support ROLLBACK: selective undo, for one
transaction

February 24, 2021 CSE 444 - Winter 2021 48

3. Undo Phase

Main principle: “logical” undo
= Start from end of Log, move backwards
= Read only affected log entries

= Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

= CLRs are redone, but never undone

February 24, 2021 CSE 444 - Winter 2021

3. Undo Phase: Detalls

= “|_ oser transactions” = uncommitted
transactions in Active Transactions Table

= ToUndo = set of lastLSN of loser transactions

February 24, 2021 CSE 444 - Winter 2021

3. Undo Phase: Detalls

While ToUndo not empty:

= Choose most recent (largest) LSN in ToUndo

= If LSN = regular record <T,P,u,v>:

* Write a CLR where CLR.undoNextLSN = LSN.prevLSN
* Undo v

» [f LSN = CLR record:

« Don’t undo !

= if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

February 24, 2021 CSE 444 - Winter 2021 51

Write Write Write JZ#27% CLR FOR CLR FOR #ZZZ0/# CLR FOR
page 1 page 1 page 1 g™ LSN 30 LSN 20 wggggzs LEN 10
& \
Log (time —®)I |l. R (a,(......................... (,,
Z %z %
LSN: 10 20 30 Restart 40 50 Restart

5 60
p -

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

February 24, 2021 CSE 444 - Winter 2021

52

3. Undo Phase: Detalls

What happens if system crashes during UNDOQO 7

February 24, 2021 CSE 444 - Winter 2021

3. Undo Phase: Detalls

What happens if system crashes during UNDOQO 7

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo

February 24, 2021 CSE 444 - Winter 2021 54

