2/19/21

Main textbook (Garcia-Molina)
»Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)
= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and
Engineering, A. Tucker, ed., CRC Press, Boca

Transactions: Recovery (part 1) Raton, 1997.

Database System Internals

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 19, 2021 CSE 444 - Winter 2020 1 February 19, 2021 CSE 444 - Winter 2020 3
1 3
Transaction Management]
Two parts:
= Concurrency control: ~ ACID

= Recovery from crashes: ACID Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

We already discussed concurrency control

You are implementing locking in lab3
Redundancy:

Disk crashes e.g. RAID, archive

Today, we start recovery

Data center failures Remote backups or

replicas
System failures: DATABASE
e.g. power RECOVERY

4 5

System Crash

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

UPDATE Account2 -
SET balance = balance + 500
COMMIT

6

Buffer Manager Review

READ
WRITE Page requests from higher-level code
Files and access methods
Buffer pool Buffer pool manager
Disk page
Pag Main
Free frame—— memory
INPUT choice of frame dictated
OUTPUT by replacement policy

Disk = collection i
of blocks 1 page corresponds

Data must be in RAM for DBMS to operate on it! to 1 disk block
Buffer pool = table of <frame#, pageid> pairs
February 19, 2021 CSE 444 - Winter 2020

(o]

System Failures

= Each transaction has internal state

* When system crashes, internal state is lost
« Don’t know which parts executed and which didn’t
+ Need ability to undo and redo

February 19, 2021

Buffer Manager Review

= Enables higher layers of the DBMS to assume that
needed data is in main memory

= Caches data in memory. Problems when crash
occurs:
1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk

February 19, 2021

u‘

2/19/21

Transactions

= Assumption: the database is composed of
elements.

= 1 element can be either:

» 1 page = physical logging
* 1 record = logical logging

* In Lab 4 we use page-level elements

February 19, 2021 CSE 444 - Winter 2020 10

10

Running Example

BEGIN TRANSACTION
READ(A t);
ti=1*2; Initially, A=B=8.
WRITE(A:t); Atomicity requires that either
READ(B1); (2)T does not commit and A<B=5,
t:=1%2;
WRITE(B,1)
COMMIT;
February 19, 2021 CSE 444 - Winter 2020 12
12

Primitive Operations of Transactions

= READ(X,1)
« copy element X to transaction local variable t

= WRITE(X 1)

« copy transaction local variable t to element X

= INPUT(X)

* read element X to memory buffer

= OUTPUT(X)

» write element X to disk

February 19, 2021 CSE 444 - Winter 2020 n

11

Running Example

BEGIN TRANSACTION

READ(A 1);

t=1t*2; Initially, A=B=8.

WRITE(A,); Atomicity requires that either

READ(B1); ()T Gomm ot ané A2t

:N; Will look at various crash scenarios

€9 What behavior do we want in each case?
February 19, 2021 CSE 444 - Winter 2020 13
13

2/19/21

READ(At); t := t*2; WRITE(At);
READ(B,t); t := t2; WRITE(B, 1)

Transaction Buffer pool

Disk

Action t MemA | MemB | DiskA

Disk B

INPUT(A) 8

READ(At)

t=t*2

WRITE(A 1)

INPUT(B)

READ(B.t)

t=t*2

WRITE(Bt)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 19, 2021

14

READ(A1); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B.t)

CSE 444 - Winter 2020

February 19, 2021

16

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t)
INPUT(B)
READ(B,t)
t=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT
CSE 444 - Winter 2020

READ(At); t := t*2; WRITE(A t);
READ(B.t); t := t*2; WRITE(B,t)

Transaction

Buffer pool

Disk

Action

t

MemA | MemB | Disk A

Disk B

INPUT(A)

8

READ(A t)

8

t:=t*2

WRITE(A 1)

INPUT(B)

READ(B.t)

t:=t*2

WRITE(B)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 19, 2021

15

CSE 444 - Winter 2020

READ(At); t := t*2; WRITE(At);
READ(B,1); t := t*2; WRITE(B 1)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B)
READ(B,t)
t=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020

17

15

17

2/19/21

READ(At); t := t*2; WRITE(At);
READ(B,t); t := t2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 18

18

I READ(A); t := t*2; WRITE(At);

READ(B,1); t := t*2; WRITE(B,1)
Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 20

20

READ(At); t := t*2; WRITE(A t);
READ(B.t); t := t*2; WRITE(B,t)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 19

19

READ(At); t := t*2; WRITE(At);
READ(B,1); t := t*2; WRITE(B 1)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A)
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 21

21

2/19/21

READ(At); t := t*2; WRITE(At);
READ(B,t); t := t2; WRITE(B, 1)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 22
22
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8 em
OUTPUT(B) 16 16 16 16 16)
COMMIT
February 19, 2021 CSE 444 - Winter 2020 24

24

READ(At); t := t*2; WRITE(A t);
READ(B.t); t := t*2; WRITE(B,t)

Transaction Buffer pool Disk
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT
February 19, 2021 CSE 444 - Winter 2020 23

23

Yes it's bad: A=16, B=8....
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8
outputA)| 16 16 16 16 Bl
outputB)| 16 16 16 16 16 |
COMMIT
Februory 19, 2021 CSE 444 - Winter 2020 25

25

2/19/21

Is this bad ?

26

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8

t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 182 et |
COMMIT
February 19, 2021 CSE 444 - Winter 2020

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8

t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8<:Cr;m]
OUTPUT(A) 16 16 16 16 8 1
OUTPUT(B) 16 16 16 16 16
COMMIT

February 19, 2021

28

CSE 444 - Winter 2020

Is this bad ?

Yes it's bad: A=B=16, but not committed

February 19, 2021

27

CSE 444 - Winter 2020

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 = crasnt
COMMIT A ol

27

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8<:~CHsh!
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

February 19, 2021

29

CSE 444 - Winter 2020

29

2/19/21

' OUTPUT can also happen after COMMIT (details coming) -

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8

t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
February 19, 2021 CSE 444 - Winter 2020

30

Atomic Transactions

* FORCE or NO-FORCE

+ Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

» Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk2

February 19, 2021

32

CSE 444 - Winter 2020

32

' OUTPUT can also happen after COMMIT (details coming) -

_ Crash! |

February 19, 2021

31

Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

CSE 444 - Winter 2020

Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8

t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8
READ(B,t) 8 16 8 8
t=t*2 16 16 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

31

* NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 19, 2021

33

CSE 444 - Winter 2020

33

2/19/21

No-Force/Steal (most strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 19, 2021 CSE 444 - Winter 2020 34

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 19, 2021 CSE 444 - Winter 2020

36

36

Write-Ahead Log (WAL)

February 19, 2021 CSE 444 - Winter 2020 35

The Log: append-only file containing log records
= Records every single action of every TXN
* Forces log entries to disk as needed

= After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

“UNDO” Log

FORCE and STEAL

February 19, 2021 CSE 444 - Winter 2020

37

37

2/19/21

Undo Logging

Log records
» <START T>

« transaction T has begun

» <COMMIT T>

* T has committed

» <ABORT T>

* T has aborted

= <T,X,v>

* T has updated element X, and its old value was v

* Idempotent, physical log records

February 19, 2021

38
[—

CSE 444 - Winter 2020

38

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <TB,8>
OUTPUT(A) 16 16 16 16 8 ol =
OUTPUT(B) 16 16 16 16 16 o
COMMIT <COMMIT T>

WHAT DO WE DO ?

ICSE 444 - Winter 2020

40

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

February 19, 2021

39
[—

CSE 444 - Winter 2020

39

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t=t*2 16 8 8 8
WRITEAL) | 16 16 8 8 <TA8>
INPUT(B) 16 16 8 8 8
READ(Bt) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
ouTPUTA)| 16 16 16 16 8
ouTPUT(B)| 16 16 16 16 16 et
COMMIT <COMMITT> |

WHAT DO WE DO ?

We UNDO by setting B=8 and A=8

2/19/21

10

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(At) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T> |
What do we do now ? — casnt

SE 444 - Winter 2020

42

After Crash

* This is all we see (for example):

CEYSICTYM | <smrTT>
8 16 <TA8>
<T,B,8>
February 19, 2021 CSE 444 - Winter 2020 44

44

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T> |
What do we do now ?

Nothing: log contains COMMIT

43

After Crash

» This is all we see (for example):

[Disk A_| pisk 8 IIESUVIRE
8 16 <TA8>
<T,B,8>
February 19, 2021 CSE 444 - Winter 2020 45

45

2/19/21

11

After Crash

» This is all we see (for example):
* Need to step through the log

[Disk A_[pisk B MRS
8 16 <TA8>
<TB8>
February 19, 2021 CSE 444 - Winter 2020 46

46

After Crash

This is all we see (for example):
Need to step through the log

CEYSICTYM | <smrTT> I

8 16 <T.A8>
<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

February 19, 2021 CSE 444 - Winter 2020 48

48

After Crash

* This is all we see (for example):
* Need to step through the log

[Disk A Disk B IIIRSUTIRES
8 16 <T,A8>
<TB,8>

* What direction?

February 19, 2021 CSE 444 - Winter 2020 47

47

After Crash

This is all we see (for example):
Need to step through the log

CEYMICTTM | <sarTT> ‘

8 16 <T,A,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

February 19, 2021 CSE 444 - Winter 2020 49

49

2/19/21

12

After Crash

This is all we see (for example):
Need to step through the log

CEYSICTYM | <swrTT>

8 18 <TA.8>
<T.B.8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

February 19, 2021 CSE 444 - Winter 2020 50

50

After Crash

This is all we see (for example):
Need to step through the log

[Disk A |pisk B ERS/YIES
8 8 <TAg>

<T,B,8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

February 19, 2021 CSE 444 - Winter 2020 52

52

After Crash

This is all we see (for example):
Need to step through the log

CEYMICTTM | <sTaRTT>

8 8 <T,A8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time

February 19, 2021 CSE 444 - Winter 2020 51

After Crash

= If we see NO Commit statement:
* We UNDO both changes: A=8, B=8

+ The transaction is atomic, since none of its actions have been
executed

= In we see that T has a Commit statement
* We don't undo anything

« The transaction is atomic, since both it’s actions have been
executed

February 19, 2021 CSE 444 - Winter 2020 58

53

2/19/21

13

Recovery with Undo Log

After system’s crash, run recovery manager

» Decide for each transaction T whether it is
completed or not

* <START T>....<COMMITT>.... =yes
* <START T>....<ABORT T>....... = yes
e <START T> e, = no

* Undo all modifications by incomplete transactions

54

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>]
Question 2:
How far back do we need to
<START T5> read in the log ?
<START T4>
<T1,X1,v1> ,
<T5,X5,v5> Question 3:
<T4,X4,v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>

— Crash
February 19, 2021 E Winter 2020

56

2/19/21

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
else ignore
<START T>: ignore

55

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>)
Question 2:
How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1>)
<T5,X5,v5> Question 3:
<T4,X4,v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>
February 19, 2021 B2 Winter 2020 5

57

14

Recovery with Undo Log

February 19, 2021

58

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

— Crash!

Question1: Which updates
are undone ?

Question 2:
How far back do we need to

read in the log ?
To the beginning.

Question 3:

What happens if second crash during
recovery?

No problem! Log records are
idempotent. Can reapply.

B44% “Winter 2020 58

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t=t2 16 8 8 8
WRITEAY | 16 16 8 8 /< <TA8> >
INPUT®B) | 16 16 8 8 8
READ(B 1) 8 6 | 81 8 8
t=t2 16 8 8 8
WRITE(B,t) 16 16 8 8 (<T,B,8> >
OUTPUT(T@ 16 16 | 16— 16 8
M/TB/ 16 16 16 16
commm | | \—EOEL»GCOMMW T}

RULES: log entry before OUTPUT before COMMIT h

60

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
- <START T>
INPUT(A) -~ When must 8
READ(A.f) 8 we force pages s
to disk ?
t=t2 16 8
WRITE(A 1) 16 16 . 8 8 <TA 8>
INPUT(B) 16 16 8 8 8
B)
READ(B,t) 8 16 8 8 8 2/
[]
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) |16 16 16 16 8 4
g
OUTPUT(B) CRT 16 16 16 16
COMMIT <COMMIT T>
February 19, 2021 CSE 444 - Winter 2020 59

59

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

* Hence: OUTPUTs are done early, before the

transaction commits

February 19, 2021 CSE 444 - Winter 2020 61

61

2/19/21

15

Checkpointing

Checkpoint the database periodically

= Stop accepting new transactions

* Wait until all current transactions complete
* Flush log to disk

= Write a <CKPT> log record, flush
= Resume transactions

February 19, 2021

62

CSE 444 - Winter 2020

Nonquiescent Checkpointing

* Problem with checkpointing: database freezes
during checkpoint

* Would like to checkpoint while database is
operational

* [dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

February 19, 2021 CSE 444 - Winter 2020

64

64

Undo Recovery with Checkpointing

<T9,X9,v9> .
other transactions
During recovery, i.alll completed)
Can stop at first <CKPT>
<CKPT> <START T2>
<START T3
<START T5>

<START T4>
<T1,X1,v1>

<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 19, 2021 CSE 444 - Winter 2020

63

Nonquiescent Checkpointing

» Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions. Flush
log to disk

= Continue normal operation

* When all of T1,...,Tk have completed, write
<END CKPT>, flush log to disk

February 19, 2021

65

CSE 444 - Winter 2020

<T5,X5,v5> transactions T2,73,T4,T5

)

2/19/21

16

Undo with Nonquiescent Checkpointing

If we crash here:
Need to read
Back to start of
T4,T5,T6

If we crash here:

o))
)]

Need to read only to
<START CKPTT4.> —— ..

<START CKPT T4, T5, T6>

<END CKPT>

Implemnnl-:nﬂ RPNIIRACK

= Reg
RO

= |de]
| | Ho‘

<T9,X9,v0>

(all completed)
<CKPT>
<START T2
<START T3>\
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T2,X1,v2>
<T4,X4 v4>
<COMMIT T5>
<T3,X3,v3> /
<T2,X2,v2>

February 19, 2021

68

COL 444 - YYINIer ZUZU

earlier transactions plus
T4,T5,T6

T4, T5, T6, plus
later transactions

later transactions

\CK

sing

68

Implementing ROLLBACK

February 19, 2021 CSE 444 - Winter 2020 67

= Recall: a transaction can end in COMMIT or
ROLLBACK

* [dea: use the undo-log to implement ROLLBACK
= How 2
*+ LSN = Log Sequence Number

* Log entries for the same transaction are linked, using
the LSN's

* Read log in reverse, using LSN pointers

REDO

NO-FORCE and NO-STEAL

February 19, 2021 CSE 444 - Winter 2020

69

69

2/19/21

17

Action t MemA | Mem B | DiskA | DiskB
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 19, 2021

70

Is this bad ?

CSE 444 - Winter 2020

Yes, it's bad: A=16, B=8

~ Crash!

Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8.
OUTPUT(B) 16 16 16 16 16 "1 .

February 19, 2021

72

CSE 444 - Winter 2020

70

72

Is this bad ?

Action t MemA | Mem B | DiskA | Disk B
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 19, 2021

71

Is this bad ?

CSE 444 - Winter 2020

Action t MemA | Mem B | Disk A | Disk B
READAY | 8 8 8 8

t=t2 16 8 8 8
WRITEAY | 16 16 8 8
READBY) | 8 16 8 8 8

t=t2 16 16 8 8 8
WRITEBY | 16 16 16 8 8
COMMIT
outruta)| 16 16 16 16 8
outrute)| 16 16 16 16 16

February 19, 2021

73

CSE 444 - Winter 2020

— Crash! -

73

2/19/21

18

Is this bad ?

Yes, it’s bad: lost update

_ Crash!

Action t MemA | Mem B | DiskA | DiskB
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 19, 2021

74

Is this bad ?

CSE 444 - Winter 2020

No: that's OK.

" Crasht

Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT)
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 19, 2021

76

CSE 444 - Winter 2020

76

Is this bad ?

Action t MemA | Mem B | DiskA | Disk B
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT)
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 19, 2021

75

CSE 444 - Winter 2020

— Crash!

75

2/19/21

19

