

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation

February 12, 2021 CSE 444 - Winter 202

Pessimistic vs. Optimistic

- Pessimistic CC (locking)
 - Prevents unserializable schedules
 - Never abort for serializability (but may abort for deadlocks)
 - · Best for workloads with high levels of contention
- Optimistic CC (timestamp, multi-version, validation)
 - · Assume schedule will be serializable
 - · Abort when conflicts detected
 - · Best for workloads with low levels of contention

February 12, 2021

CSE 444 - Winter 2021

3

Timestamps

■ Each transaction receives unique timestamp TS(T)

Could be:

- The system's clock
- A unique counter, incremented by the scheduler

February 12, 2021

SE 444 - Winter 2021

4

Timestamps

Main invariant:

The timestamp order defines the serialization order of the transaction

Will generate a schedule that is view-equivalent to a serial schedule, and recoverable

February 12, 2021

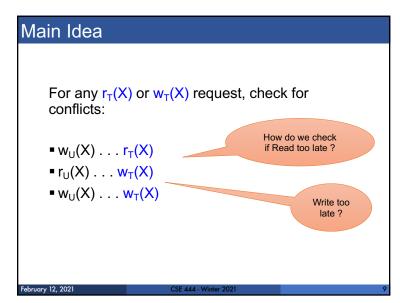
6

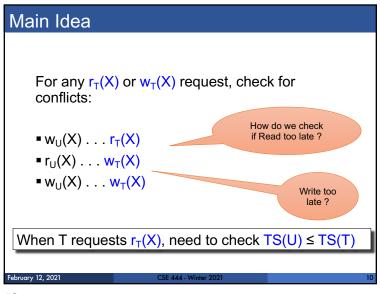
Timestamps

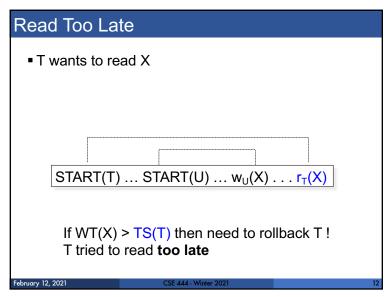
With each element X, associate

- RT(X) = the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

If transactions abort, we must reset the timestamps

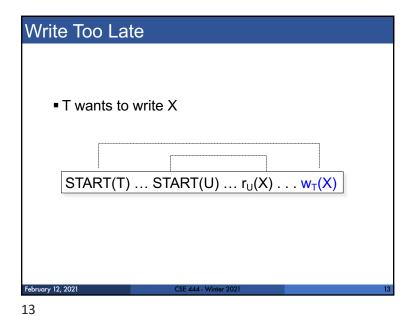

February 12, 2021

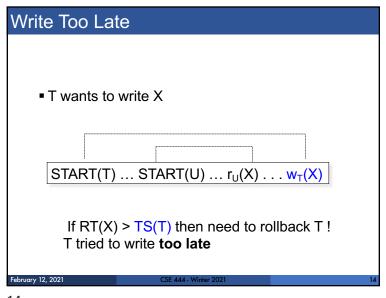

Timestamps

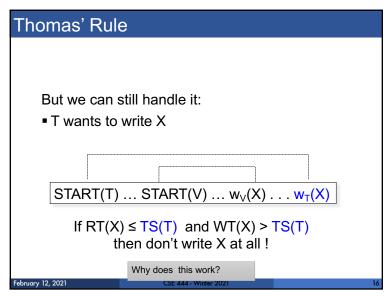

With each element X, associate

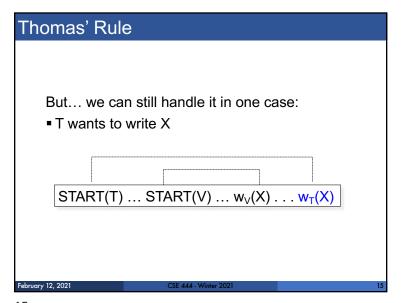
- RT(X) = the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

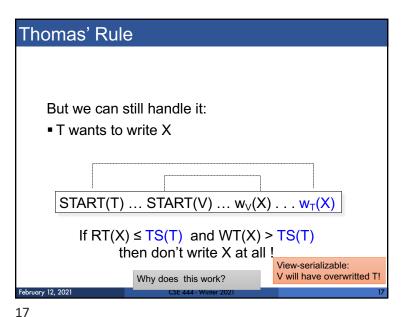
February 12, 2021






Read Too Late


T wants to read X


START(T) ... START(U) ... w_U(X) ... r_T(X)

View-Serializability

By using Thomas' rule we do obtain a viewserializable schedule

18

February 12, 2021

Ensuring Recoverable Schedules

Recall:

- Schedule avoids cascading aborts if whenever a transaction reads an element, then the transaction that wrote it must have already committed
- Use the commit bit C(X) to keep track if the transaction that last wrote X has committed (just a read will not change the commit bit)

February 12, 2021 CSE 444 - Winter 2021

Summary So Far

Only for transactions that do not abort

Otherwise, may result in non-recoverable schedule

Transaction wants to **READ** element X
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to **WRITE** element X

If RT(X) > TS(T) then ROLLBACK

Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)

Otherwise, WRITE and update WT(X) =TS(T)

February 12, 2021

CSE 444 - Winter 2021

19

Ensuring Recoverable Schedules

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... $w_U(X)$.. $(r_T(X))$.. ABORT(U)

If C(X)=false, T needs to wait for it to become true

21

Ensuring Recoverable Schedules

Thomas' rule needs to be revised:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

START(T) ... START(U)... $w_U(X)$... $w_{\overline{Y}}(X)$... ABORT(U)

If C(X)=false, T needs to wait for it to become true

February 12, 2021 CSE 444 - Wil

22

Timestamp-based Scheduling

RULES including commit bit

- There are 4 long rules in Sec. 18.8.4
- You should be able to derive them yourself, based on the previous slides
- Make sure you understand them!

READING ASSIGNMENT: Garcia-Molina et al. 18.8.4

obrugry 12 2021

24

SE 444 - Winter 2021

Timestamp-based Scheduling

- When a transaction T requests r_T(X) or w_T(X), the scheduler examines RT(X), WT(X), C(X), and decides one of:
- To grant the request, or
- To rollback T (and restart with later timestamp)
- To delay T until C(X) = true

February 12, 2021

CSE 444 - Winter 2021

23

Timestamp-based Scheduling (sec. 18.8.4)

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK

Else If C(X) = false, then WAIT

Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X

If RT(X) > TS(T) then ROLLBACK

Else if WT(X) > TS(T)Then If C(X) = false then WAIT

else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

outorwise, with E, and apacto with (x) re(r), e(x) raise

Basic Timestamps with Commit Bit										
	T ₁	T ₂	T ₃	T ₄	A RT=0	_				
Time		W ₂ (A)			WT=0	C=true				
Time										
1										
February 12, 2021			CSE 444 - V	Vinter 2021		26				

Summary of Timestamp-based Scheduling

- View-serializable
- Avoids cascading aborts (hence: recoverable)
- Does NOT handle phantoms
 - These need to be handled separately, e.g. predicate locks

February 12, 2021 CSE 444 - Winter 2021

Basic Ti	Basic Timestamps with Commit Bit										
	T ₁	T_2	T ₃	T ₄	Α						
-	1	2	3	4	RT=0						
	'	2	3	4		C=true					
-		111 (1)									
		$W_2(A)$			–	C=false					
Time	R ₁ (A)				RT=0						
I	Abort		R ₃ (A)								
	Abort		Delay								
		С			C=	true					
↓			R ₃ (A)		RT=3						
				W ₄ (A)	WT=4	C=false					
			W ₃ (A)								
			delay								
				abort	WT=2	C=true					
			W3(A)		WT=3	C=false					
February 12, 2021		(CSE 444 - W	/inter 2021			27				

27

Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: X_t, X_{t-1}, X_{t-2}, . . .

$$TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > \dots$$

29

Details

• When w_T(X) occurs, if the write is legal then create a new version, denoted X_t where t = TS(T)

Create a new version, denoted X where t = 10(1

30

February 12, 2021

Example (in class)

Four versions of X: X_3 X_9 X_{12} X_{18}

 $R_6(X)$ -- Read X_3

 $W_{21}(X)$ – Check read timestamp of X_{18}

 $R_{15}(X)$ – Read X_{12}

 $W_5(X)$ – Check read timestamp of X_3

When can we delete X_3 ?

February 12, 2021 CSE 444 - Winter 2021

Details

When w_T(X) occurs, if the write is legal then create a new version, denoted X_t where t = TS(T)

• When r_T(X) occurs, find most recent version X_t such that t <= TS(T) Notes:

- WT(X_t) = t and it never changes for that version
- RT(X_t) must still be maintained to check legality of writes
- Can delete X_t if we have a later version X_{t1} and all active transactions T have TS(T) > t1

February 12, 2021

CSE 444 - Winter 2021

31

Example w/ Basic Timestamps

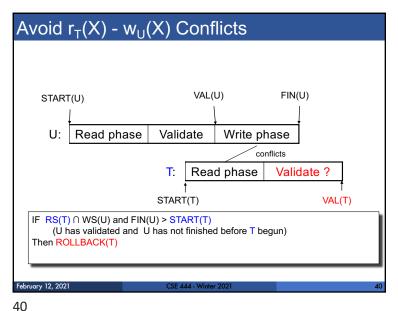
			ı	I	l
_	T ₁	T ₂	T ₃	T ₄	Α
Timestamps:	150	200	175	225	RT=0
					WT=0
-	R ₁ (A)				RT=150
	$R_1(A)$ $W_1(A)$				WT=150
	** (/-1)	$R_2(A)$			RT=200
		$R_2(A)$ $W_2(A)$			WT=200
			R ₃ (A)		
			Abort		
				$R_4(A)$	RT=225

32

Exampl	Example w/ Multiversion											
	ı	ı	ı	1								
T ₁	T ₂	T ₃	T ₄	A_0	A ₁₅₀	A ₂₀₀						
150	200	175	225									
R ₁ (A)				RT=150								
W ₁ (A)					Create							
1110 9	R ₂ (A)				RT=200							
	$W_2(A)$					Create						
		R ₃ (A)			RT=200							
		W ₃ (A)										
		abort										
			R ₄ (A)			RT=225						
February 12, 2021			CSF A	44 - Winter 2021	_		34					
1 ebrodry 12, 2021			COL 4	44 - Willer 2021			34					

Se	Second Example w/ Multiversion										
T ₁	T ₂	T ₃	T ₄	T ₅	A ₀ A ₁	A_2	A_3	A_4	A ₅		
1	2	3	4	5							
			W ₄ (A)								
				1							
February	12, 2021			CSE	444 - Winter 2021					36	

T ₂					
200	T ₃	T ₄	A ₀	A ₁₅₀	A ₂₀₀
R ₂ (A) W ₂ (A)	R ₃ (A) W ₃ (A) abort	R ₄ (A)	RT=150	Create RT=200 RT=200	Create RT=225
F۱	R ₂ (A) N ₂ (A)	N ₂ (A) R ₃ (A) W ₃ (A)	N ₂ (A) R ₃ (A) W ₃ (A) abort	R ₂ (A) N ₂ (A) R ₃ (A) W ₃ (A) abort	Create R ₂ (A) N ₂ (A) R ₃ (A) W ₃ (A) abort

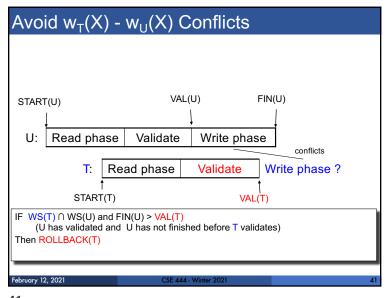

Sec	Second Example w/ Multiversion										
T 1	T ₂	T ₃	T ₄	T ₅	A ₀	A_1	A_2	A_3	A_4	A_5	
1	2	3	4	5							
W1(A)	R ₂ (A)	R ₃ (A)	W ₄ (A)			Create RT=2 RT=3	2		Creat	te	
R ₁ (A)	W ₂ (A) abort		R ₄ (A)	R ₅ (A) W ₅ (A)	X	RT=3	3		RT=5	Create	
C X means that we can delete this version February 12, 2021 CSE 444 - Winter 2021 37											

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation

38

February 12, 2021



CSE 444 - Winter 2021

Concurrency Control by Validation Each transaction T defines: • Read set RS(T) = the elements it reads • Write set WS(T) = the elements it writes • Each transaction T has three phases: Read phase; time = START(T) Validate phase (may need to rollback); time = VAL(T) Write phase; time = FIN(T) Main invariant: the serialization order is VAL(T)

39

February 12, 2021

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation
 - · Not in the book, but good overview in Wikipedia

February 12, 2021

CSE 444 - Winter 2021

42

Snapshot Isolation Overview

- Each transactions receives a timestamp TS(T)
- Transaction T sees snapshot at time TS(T) of the database
- W/W conflicts resolved by "first committer wins" rule
 Loser gets aborted
- R/W conflicts are ignored

February 12, 2021 CSF 444, Wint

Snapshot Isolation

- A type of multiversion concurrency control algorithm
- Provides yet another level of isolation
- Very efficient, and very popular
 - Oracle, PostgreSQL, SQL Server 2005
- Prevents many classical anomalies BUT...
- Not serializable (!), yet ORACLE and PostgreSQL use it even for SERIALIZABLE transactions!
 - But "serializable snapshot isolation" now in PostgreSQL

February 12, 2021

CSE 444 - Winter 2021

43

Snapshot Isolation Details

- Multiversion concurrency control:
 - Versions of X: X_{t1} , X_{t2} , X_{t3} , . . .
- When T reads X, return X_{TS(T)}.
- When T writes X (to avoid lost update):
 - If latest version of X is TS(T) then proceed
 - Else if C(X) = true then abort
 - Else if C(X) = false then wait
- When T commits, write its updates to disk

February 12, 202

444 - Winter 2021

44

What Works and What Not

- No dirty reads (Why?)
 - · Start each snapshot with consistent state
- No inconsistent reads (Why?)
 - · Two reads by the same transaction will read same snapshot
- No lost updates ("first committer wins")
- Moreover: no reads are ever delayed
- However: read-write conflicts not caught!
 - · A txn can read and commit even though the value had changed in the middle

February 12, 2021

46

Write Skews Can Be Serious

- Acidicland had two viceroys, Delta and Rho
- Budget had two registers: taXes, and spendYng
- They had high taxes and low spending...

Delta: READ(taXes); if taXes = 'High' then { spendYng = 'Raise'; WRITE(spendYng) } COMMIT

READ(spendYng); if spendYng = 'Low' then {taXes = 'Cut'; WRITE(taXes) } COMMIT

... and they ran a deficit ever since.

February 12, 2021

Write Skew T1: T2: READ(X); READ(Y); if Y >= 50 if X >= 50then Y = -50; WRITE(Y) then X = -50; WRITE(X) In our notation: $R_1(X)$, $R_2(Y)$, $W_1(Y)$, $W_2(X)$, C_1 , C_2 Starting with X=50,Y=50, we end with X=-50, Y=-50. Non-serializable !!! CSE 444 - Winter 2021

47

February 12, 2021

Discussion: Tradeoffs

- Pessimistic CC: Locks
 - · Great when there are many conflicts
 - · Poor when there are few conflicts
- Optimistic CC: Timestamps, Validation, SI
 - · Poor when there are many conflicts (rollbacks)
 - · Great when there are few conflicts
- Compromise
 - READ ONLY transactions → timestamps
 - READ/WRITE transactions → locks

Commercial Systems

Always check documentation!

- DB2: Strict 2PL
- SQL Server:
 - Strict 2PL for standard 4 levels of isolation
 - Multiversion concurrency control for snapshot isolation
- PostgreSQL: SI; recently: seralizable SI (!)
- Oracle: SI

February 12, 2021