

Key Decisions for Implementation

Search Space

Optimization rules

Which algebraic laws do we apply?

Optimization algorithm

bruary 7, 2021 CSE 444 - Winter 202

Announcements

- HW 3 will be released tonight
- Lab 1 grades and feedback on Thursday
- Quiz 1+2 on Feb. 10th
 - · Not as long as a midterm
 - Example posted on webpage calendar entry

February 7, 2021

CSE 444 - Winter 2021

2

Optimization Rules – RA equivalencies

- Selections
 - Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
 - Cascading: $\sigma_{c1/c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Projections
 - Cascading
- Joins
 - Commutative : R ⋈ S same as S ⋈ R
 - Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

February 7, 202

CSE 444 - Winter 2021

Example: Simple Algebraic Laws

■ Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) =$$

$$\sigma_{A=5 \text{ AND } G=9} (R \bowtie_{D=E} S) =$$

February 7, 202

CSE 444 - Winter 2021

5

Example: Simple Algebraic Laws

■ Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=F} S) = R \bowtie_{D=F} \sigma_{F=3}(S)$$

$$\sigma_{A=5 \text{ AND G}=9} (R \bowtie_{D=E} S) = \sigma_{A=5} (R) \bowtie_{D=E} \sigma_{G=9} (S)$$

February 7, 202

CSE 444 - Winter 2021

Example: Simple Algebraic Laws

■ Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) = R \bowtie_{D=E} \sigma_{F=3}(S)$$

$$\sigma_{A=5 \text{ AND G}=9} (R \bowtie_{D=E} S) =$$

February 7, 202

CSE 444 - Winter 2021

6

Commutativity, Associativity, Distributivity

 $R \cup S = S \cup R$, $R \cup (S \cup T) = (R \cup S) \cup T$ $R \bowtie S = S \bowtie R$, $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

 $|R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$

0

Laws Involving Selection

$$\begin{array}{c} \sigma_{\,C\,AND\,C'}(R) = \sigma_{\,C}(\sigma_{\,C'}(R)) = \sigma_{\,C}(R) \cap \sigma_{\,C'}(R) \\ \sigma_{\,C\,OR\,C'}(R) = \sigma_{\,C}(R) \cup \sigma_{\,C'}(R) \\ \sigma_{\,C}(R \bowtie S) = \sigma_{\,C}(R) \bowtie S \end{array}$$

$$\sigma_{C}(R-S) = \sigma_{C}(R) - S$$

 $\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup \sigma_{C}(S)$
 $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$

Assuming C on attributes of R

February 7, 2021

9

Laws Involving Projections

$$\Pi_{M}(R \bowtie S) = \Pi_{M}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$$

$$\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$$
/* note that $M \subseteq N$ */

■ Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R\bowtie_{D=E}S) = \Pi_{A,B,G}(\Pi_{A,B,D}(R)\bowtie_{D=E}\Pi_{E,G}(S))$

February 7, 2021 CSE 444 - Winter 2021

Laws Involving Projections

$$\Pi_{M}(R \bowtie S) = \Pi_{M}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$$

$$\Pi_{M}(\Pi_{N}(R)) = \Pi_{M}(R)$$
/* note that M \subseteq N */

■ Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R \bowtie_{D=E} S) = \Pi_{?}(\Pi_{?}(R) \bowtie_{D=E} \Pi_{?}(S))$

February 7, 202

CSE 444 - Winter 2021

10

Laws for grouping and aggregation

 $\gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$ $\gamma_{A, \text{ agg}(D)}(R(A,B) \bowtie_{B=C} (\gamma_{C, \text{ agg}(D)}S(C,D)))$

12

Laws for grouping and aggregation

 $\delta(\gamma_{A, \text{ agg}(B)}(R)) = \gamma_{A, \text{ agg}(B)}(R)$

 $\gamma_{A, \text{ agg}(B)}(\delta(R)) = \gamma_{A, \text{ agg}(B)}(R)$ if agg is "duplicate insensitive"

Which of the following are "duplicate insensitive" ? sum, count, avg, min, max

Juliary 1, 2021

13

Search Space Challenges

- Search space is huge!
 - Many possible equivalent trees
 - · Many implementations for each operator
 - · Many access paths for each relation
 - File scan or index + matching selection condition
- Cannot consider ALL plans
 - Heuristics: only partial plans with "low" cost

CSE 444 - Winter 2021

4 - Winter 2021

Laws Involving Constraints

Product(<u>pid</u>, pname, price, cid) Company(<u>cid</u>, cname, city, state)

 $\Pi_{\text{pid, price}}(\text{Product} \bowtie_{\text{cid=cid}} \text{Company}) = \Pi_{\text{pid, price}}(\text{Product})$

Foreign key

14

Key Decisions

Search Space

Optimization rules

Optimization algorithm

16

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R (aka Selinger) style optimizer[1979]
 - · Limited to joins: join reordering algorithm
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

February 7, 2021

CSE 444 - Winter 2021

17

The Three Parts of an Optimizer

- Cost estimation
 - Based on cardinality estimation
- Search space
- Search algorithm

ebruary 7, 2021 CSE 444 - Winter 202

Two Types of Optimizers

- Rule-based (heuristic) optimizers:
 - Apply greedily rules that always improve plan
 - · Typically: push selections down
 - · Very limited: no longer used today
- Cost-based optimizers:
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan
 - · We focus on cost-based optimizers

February 7, 202

CSE 444 - Winter 2021

18

19

Input: A logical query plan Output: A good physical query plan Basic query optimization algorithm Enumerate alternative plans (logical and physical) Compute estimated cost of each plan Compute number of I/Os Optionally take into account other resources Choose plan with lowest cost This is called cost-based optimization

■ Dynamic programming (in class) ■ Based on System R (aka Selinger) style optimizer[1979] ■ Limited to joins: join reordering algorithm ■ Bottom-up ■ Rule-based algorithm (will not discuss) ■ Database of rules (=algebraic laws) ■ Usually: dynamic programming ■ Usually: top-down

Dynamic Programming

Originally proposed in System R [1979]

• Only handles single block queries:

- Some heuristics for search space enumeration:
 - Selections down
 - · Projections up
 - · Avoid cartesian products

February 7, 2021

CSE 444 - Winter 2021

29

Dynamic Programming

SELECT list FROM R1, ..., Rn WHERE cond: AND cond: AND . . . AND conds

- Step 1: For each {R_i} do:
 - $T({R_i}) = T(R_i)$
 - Plan({R_i}) = access method for R_i
 - Cost({R_i}) = cost of access method for R_i

Dynamic Programming

SELECT list FROM R1, ..., Rn WHERE cond: AND cond: AND . . . AND cond.

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - T(Q) = the estimated size of Q
 - Plan(Q) = a best plan for Q
 - Cost(Q) = the estimated cost of that plan

30

Dynamic Programming

SELECT list FROM R1, ..., Rn WHERE cond: AND cond: AND . . . AND condk

- Step 2: For each $Q \subseteq \{R_1, ..., R_n\}$ of size k do:
 - T(Q) = use estimator
 - Consider all partitions Q = Q' ∪ Q" compute cost(Plan(Q') ⋈ Plan(Q"))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan
- Note
 - If we restrict to left-linear trees: Q" = single relation
 - May want to avoid cartesian products

February 7, 20

E 444 - Winter 2021

Example				
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000		
T(S) = 5000	S	5000		
T(T) = 3000 T(U) = 1000	Т	3000		
1(0) = 1000	U	1000		
	RS			
	RT			
Assume B() = T()/10	RU			
D() - 1()/10	ST			
Join selectivity	SU			
is 0.001	TU			
	RST			
	RSU			
	RTU			
	STU			
	RSTU			
bruary 7, 2021		CSE 444 - Wir	nter 2021	

Example SELECT *
FROM R, S, T, U
WHERE cond1 AND cond2 AND . ■R⋈S⋈T⋈U Assumptions: T(R) = 2000T(S) = 5000T(T) = 3000T(U) = 1000■ Every join selectivity is 0.001 February 7, 2021

34

Example				
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000		
T(S) = 5000	S	5000		
T(T) = 3000 T(U) = 1000	Т	3000		
1(0) = 1000	U	1000		
	RS	10000		
	RT	6000		
Assume B() = T()/10	RU	2000		
D() - 1()/10	ST	15000		
Join selectivity	SU	5000		
is 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		
ruary 7, 2021		CSE 444 - Wir	nter 2021	

35 36

Example				
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
T(S) = 5000	s	5000		
T(T) = 3000 T(U) = 1000	Т	3000		
1(0) = 1000	U	1000		
	RS	10000		
	RT	6000		
Assume B() = T()/10	RU	2000		
D() - 1()/10	ST	15000		
Join selectivity	SU	5000		
s 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		
oruary 7, 2021		CSE 444 - Wir	nter 2021	

	Subquery	т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
T(S) = 5000	S	5000	Table scan	500
T(T) = 3000	Т	3000	Table scan	300
T(U) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000		
	RT	6000		
Assume B() = T()/10	RU	2000		
B() = 1()/10	ST	15000		
Join selectivity	SU	5000		
is 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		
bruary 7, 2021		CSE 444 - Wir	nter 2021	

	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
r(S) = 5000	S	5000	Table scan	500
T(T) = 3000 T(U) = 1000	Т	3000		
(0) = 1000	U	1000		
	RS	10000		
	RT	6000		
Assume	RU	2000		
B() = T()/10	ST	15000		
Join selectivity	SU	5000		
s 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000	·	
	STU	15000		
	RSTU	30000		

	Subquery	Т	Plan	Cost
(R) = 2000	R	2000	Clustered index scan R.A	200
(S) = 5000	S	5000	Table scan	500
(T) = 3000	T	3000	Table scan	300
(U) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000	R ⋈ S nested loop join	
	RT	6000		
ssume	RU	2000		
() = T()/10	ST	15000		
in coloctivity	SU	5000		
Join selectivity is 0.001	ΤU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		

Example				
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
T(S) = 5000	s	5000	Table scan	500
T(T) = 3000 T(U) = 1000	Т	3000	Table scan	300
1(0) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000	R ⋈ S nested loop join	
	RT	6000	R ⋈ T index join	
Assume	RU	2000		
3() = T()/10	ST	15000		
oin coloctivity	SU	5000		
oin selectivity s 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		
ruary 7, 2021		CSE 444 - Wir	nter 2021	

		ı		
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
T(S) = 5000	s	5000	Table scan	500
T(T) = 3000 T(U) = 1000	Т	3000	Table scan	300
1(0) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000	R ⋈ S nested loop join	
	RT	6000	R ⋈ T index join	
Assume	RU	2000	R ⋈ U index join	
B() = T()/10	ST	15000	S ⋈ T hash join	
	SU	5000		
Join selectivity is 0.001	TU	3000		
	RST	30000	(RT) ⋈ S hash join	
	RSU	10000	(SU) ⋈ R merge join	
	RTU	6000		
	STU	15000		
	RSTU	30000		

	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
T(S) = 5000	S	5000	Table scan	500
T(T) = 3000 T(U) = 1000	Т	3000	Table scan	300
1(0) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000	R ⋈ S nested loop join	***
	RT	6000	R ⋈ T index join	***
Assume	RU	2000	R ⋈ U index join	
B() = T()/10	ST	15000	S ⋈ T hash join	
loin coloctivity	SU	5000		
Join selectivity is 0.001	TU	3000		
	RST	30000		
	RSU	10000		
	RTU	6000		
	STU	15000		
	RSTU	30000		

42

Example				
	Subquery	Т	Plan	Cost
T(R) = 2000	R	2000	Clustered index scan R.A	200
r(S) = 5000	S	5000	Table scan	500
T(T) = 3000 T(U) = 1000	Т	3000	Table scan	300
1(0) = 1000	U	1000	Clustered index scan U.F	100
	RS	10000	R ⋈ S nested loop join	
	RT	6000	R ⋈ T index join	
Assume	RU	2000	R ⋈ U index join	
B() = T()/10	ST	15000	S ⋈ T hash join	
1-1	SU	5000		
Join selectivity is 0.001	TU	3000		
	RST	30000	(RT) ⋈ S hash join	
	RSU	10000	(SU) ⋈ R merge join	
	RTU	6000		
	STU	15000		
	RSTU	30000	(RT) ⋈ (SU) hash join	
oruary 7, 2021		CSE 444 - Wir	nter 2021	

Discussion

- For the subset {RS}, need to consider both R ⋈ S and S ⋈ R
 - Because the cost may be different!
- When computing the cheapest plan for
- (Q) \bowtie R, we may consider new access methods for R, e.g. an index look-up that makes sense only in the context of the join

February 7, 2021

CSE 444 - Winter 2021

45

Discussion

SELECT list FROM R1, ..., Rn WHERE cond: AND cond: AND . . . AND cond.

Given a query with n relations R1, ..., Rn

- How many entries do we have in the dynamic programming table?
 - A: 2ⁿ 1
- For each entry, how many alternative plans do we need to inspect?
 - A: for each entry with k tables, examine 2k 2 plans

February 7, 2021 CSE 444 - Winter 202

Discussion

SELECT list FROM R1, ..., Rn WHERE cond: AND cond: AND . . . AND conds

Given a query with n relations R1, ..., Rn

- How many entries do we have in the dynamic programming table?
- For each entry, how many alternative plans do we need to inspect?

February 7, 20

CSE 444 - Winter 2021

46

Reducing the Search Space

- Left-linear trees
- No cartesian products

48

Types of Join Trees

■ Bushy:

R3

R1

R5

February 7, 2021

CSE 444 - Winter 2021

50

50

49

51 5

