

/hat We Already Know
Supplier (sno, sname, scity, sstate) Part (pno, pname, psize, pcolor) Supply (sno, pno, price)
For each SQL query
SELECT S.sname FROM Supplier S, Supply U WHERE S.scity='Seattle' AND S.sstate='WA' AND S.sno = U.sno AND U.pno = 2
There exist many logical query plans
uary 3, 2021 CSE 444 - Winter 2021

V

Febr

4

3

What We Also Know

- For each logical plan...
- There exist many physical plans

Query Optimizer Overview

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)

CSE 444 - Winter 202

- Compute estimated cost of each plan
 - Compute number of I/Os
 - · Optionally take into account other resources
- · Choose plan with lowest cost
- · This is called cost-based optimization

Query Optimizer Overview • Input: A logical query plan • Output: A good physical query plan

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

12

11

February 3, 2021

Observations

In order to make the right choice

- Need to have statistics over the data
- The B's, the T's, the V's
- Commonly: histograms over base data
 - In SimpleDB as well... lab 5.

13

February 3, 2021

CSE 444 - Winter 2021

Commutativity, Associativity, Distributivity
$R \cup S = S \cup R, \ R \cup (S \cup T) = (R \cup S) \cup T$
$R \bowtie S = S \bowtie R, R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
$R\bowtie(S\cupT)\ =\ (R\bowtieS)\cup(R\bowtieT)$
ebruary 3, 2021 CSE 444 - Winter 2021 22

Laws Involving Projections

 $\Pi_{\mathsf{M}}(\mathsf{R}\bowtie\mathsf{S})=\Pi_{\mathsf{M}}(\Pi_{\mathsf{P}}(\mathsf{R})\bowtie\Pi_{\mathsf{Q}}(\mathsf{S}))$

$$\label{eq:matrix} \begin{split} \Pi_{M}(\Pi_{N}(\mathsf{R})) &= \Pi_{M}(\mathsf{R}) \\ /^{*} \text{ note that } \mathsf{M} \subseteq \mathsf{N} \ ^{*} / \end{split}$$

 Example R(A,B,C,D), S(E, F, G) Π_{A,B,G}(R ⋈ _{D=E} S) = Π_{A,B,G} (Π_{A,B,D}(R) ⋈ _{D=E} Π_{E,G}(S))

25

February 3, 2021

Laws for grouping and aggregation $\gamma_{A, agg(D)}(R(A,B) \bowtie_{B=C} S(C,D)) = \gamma_{A, agg(D)}(R(A,B) \bowtie_{B=C} (\gamma_{C, agg(D)}S(C,D)))$

February 3, 2021

26

<section-header><section-header>Events in colspansion colspansion colspansion colspansion<td colspansion

Search Space Challenges

Search space is huge!

- · Many possible equivalent trees
- · Many implementations for each operator
- Many access paths for each relation
 - File scan or index + matching selection condition
- Cannot consider ALL plans
 - Heuristics: only partial plans with "low" cost

29

February 3, 2021

Key Decisions

Logical plan

- What logical plans do we consider (left-deep, bushy?) Search Space
- Which algebraic laws do we apply, and in which context(s)? Optimization rules
- In what order do we explore the search space? Optimization algorithm

CSE 444 - Winter 202

Even More Key Decisions!

Physical plan

- What physical operators to use?
- What access paths to use (file scan or index)?
- Pipeline or materialize intermediate results?
- These decisions also affect the search space

CSE 444 - Winter 2021

February 3, 2021

February 3, 2021