sessionid
NumberOfSession
4 Date
#K1 | experimentin
Setup P ——
t T 7
lation Trial ",
dividual Setuphame
X {idald SetupType A
ey — B
NumberOfTrial
A%
FK3 | SubjectiD | -
Start I e
Duration .
NMarker RIS Worker 3 Worker 3
SetupMarker 2 A\ (R Worker 3 rker forker
Record edMovieFile N et = Ky &0 17
e ' Mensaw,yh% - szl Traditional el i
Q dben Y Aerys ‘ II . (a) Traditional parallel query plan
= Tywin
T y X . "II N pis
Trial_has_Timecourse [riat_tas_rrajectory 5 ’ —— "l p——rr—
saiime. Renlyims T —Eia -!
AAX . e | E—
i ; & e fTyrion S S — 7
it [| |2 e Ao == S Hpercune
i Cersél e > Shuffle
¢ ‘ . Podrick H
Uoras, KeviShae F
Timecourse [ratectory ~ 2
Walton JoffreMargaerygn
% | Timecoursein P | Tesjectoryin s MYIcSHE Gresor
BTN OlennaSandl (varie
Frequency Frequency « Bronn
SegmentiD SegmentiO . Melyg
KindOfata KindOtData Gendry iyn
MarkerD

gl ube shuffle-based parallel g

- o

Database System Internals

Join Algorithms (cont.)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 - Winter 2020

Summary of External Join Algorithms

» Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

» Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

» Merge Join: 3B(R)+3B(S)
« B(R)+B(S) <= M?

» Partitioned Hash Join: (coming up next)

Januar y 29, 2021 CSE 444 - Winter 2020

Partitioned Hash Algorithms

= Partition R it into k buckets:
R1l RZI R3I coey Rk

January 29, 2021 CSE 444 - Winter 2020 4

Partitioned Hash Algorithms

= Partition R it into k buckets:
R]l RZI R3I coey Rk

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R:) = B(R)/k, foralli

Januar y 29, 2021 CSE 444 - Winter 2020

Partitioned Hash Algorithms

= Partition R it into k buckets:
R]l R21 R3I coey Rk

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R:) = B(R)/k, foralli

= Goal: each R; should fit in main memory:

B(R) < M

Januar y 29, 2021 CSE 444 - Winter 2020

Partitioned Hash Algorithms

= Partition R it into k buckets:
R]l R21 R3I coey Rk

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R:) = B(R)/k, foralli

= Goal: each R, should fit in main memory:
B(R) < M

How do we choose k?

Januar y 29, 2021 CSE 444 - Winter 2020

Partitioned Hash Algorithms

* We choose k = M-1 Each bucket has size approx.
B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
S 1 S
1
1
INPUT 2
2 N hash 2
> function o0 4 e
h M-1
B(R) M-1
~ N~
Disk M main memory buffers Disk
Assumption: B(R)M <M, i.e.B(R)< M?
January 29, 2021 CSE 444 - Winter 2020 8

Partitioned Hash Algorithms

 We choose k = M-1 Each bucket has size approx.

B(R)/(M-1) = B(R)/M

B(R)

Relation

>

R

INPUT

.

~_
Disk

>

OUTPUT
1

Partitions
e

2

hash
function

0 0 9

h M-1

¢ 0 0

M main memory buffers

N~
Disk

Assumption:

B(RYM <M, i.e.B(R)< M2

CSE 444 - Winter 2019

M-1

57

Partitioned Hash Join (Grace-Join)

RS

Note: partitioned hash-join
iIs sometimes called
qgrace-join

January 29, 2021

Partitioned Hash Join (Grace-Join)

RS

= Step 1:
« Hash S into M-1 buckets
 Send all buckets to disk

" Step 2
« Hash R into M-1 buckets
 Send all buckets to disk
= Step 3

« Join every pair of buckets

Note: grace-join is
also called
- partitioned hash-join \

/

January 29, 2021

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
4|3 310 1
m T: Input buffer
s
AR
K
~— o
January 29, 2021 CSE 444 - Winter 2020 12

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
17 o[°
K 1
m T: Input buffer
918 3| 3
s
Ak
K
~— o
January 29, 2021 CSE 444 - Winter 2020 13

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
17 ol °
4|3 1T 1
m T: Input buffer
9|8 3| 3
s
R
S
~— o
January 29, 2021 CSE 444 - Winter 2020 14

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
17 ol°
4|3 1| !
m T: Input buffer
9|8 3/ 3|7
s
Ak
sT7
~— o
January 29, 2021 CSE 444 - Winter 2020 15

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
117 o’
4 | 3 413 1| 1
m T: Input buffer
91 8 3| 3|7
s
Ak
sT7
~— o
January 29, 2021 CSE 444 - Winter 2020 16

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

~— Disk

~— I
R S Memory M = 5 pages
31| 0 Hash h: value % 4
) @ ol
4|3 3 1| 1
m 2 |l & Input buffer 2
9|8 3| 3|7
KX e
12 | 1
5|7
~— o
January 29, 2021 CSE 444 - Winter 2020 17

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

\ Disk / \ /

R S Memory M = 5 pages

3 | o Hash h: value % 4

Input buffer
BB AE " 2
KX Ok
12 | 1

5|7

January 29, 2021 CSE 444 - Winter 2020 18

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

\ Disk / \ /

R S Memory M = 5 pages

3 | o Hash h: value % 4

Input buffer
BB AE " 2
KX Ok
12 | 1

5|7

January 29, 2021 CSE 444 - Winter 2020 19

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

Dk TS - >
R S Memory M = 5 pages
3 | o Hash h: value % 4
R 1 1151919 115
Input buffer
9| 8 3 3|7 3 | 1 7
] s
s |7
January 29, 2021 CSE 444 - Winter 2020 20

Partitioned Hash-Join Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

~— Disk

EENEN - [
BEEE [

B
Le]le] 2 |5
T
12| 1
s |7
\ //

January 29, 2021

Memory M = 5 pages

Hash h: value % 4

Input buffer

w N = O

CSE 444 - Winter 2020

—
\

T
)

2]

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

0| 4 8 |12
Input buffer Output buffer
115 919 115
2
3|7 3 |11 7
\ /
January 29, 2021 CSE 444 - Winter 2020 22

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

2l 4]

0| 4 8 |12
Input buffer Output buffer
115 919 115
2
317 3N 7
\ //
January 29, 2021 CSE 444 - Winter 2020 23

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

2l 4]
>

0| 4 8 |12
Input buffer Output buffer
115 919 115
2
317 3N 7
\ //
January 29, 2021 CSE 444 - Winter 2020 24

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

2l 4]
>

0
ol 8|12 Input buffer Output buffer
1151919 115
2
3|7 (|3 |11|]|7
\ /
January 29, 2021 CSE 444 - Winter 2020 25

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

2l 4]
>

0 II 4
ol 8|12 Input buffer Output buffer
1151919 115
2
3|7 (|3 |11|]|7
\ /
January 29, 2021 CSE 444 - Winter 2020 26

Partitioned Hash-Join

Original Relation

= Partition both relations
using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

>

INPUT

.
>

hash
function

h

OUTPUT
1

Partitions
e

2

0 0 9

M-1

B main memory buffers

~
Disk

M-1

Partitioned Hash-Join

Original Relation OUTPUT Partitions
S 1 S
= Partition both relations) 1
using hash fn h: R tuples in INPUT 5
partition i will only match S] fdEihn o
tuples in partition i. = .- h M-1 oo
M-1
~ ~
Disk B main memory buffers Disk
Partitions _
of R& S Join Result
Read in a partition of R, — Hassh_ :afﬁ_?;:;ertsl)tlon >
hash it using h2 (<> h!). ';,zSh ' B
Scan matching partition of h2 | 000
S, search for matches. - 4/. []
h2 o0 0
000 > . >
Input buffer Output .
== for Ri buffer v
Disk B main memory buffers Disk

Partitioned Hash-Join

= Cost: 3B(R) + 3B(S)
= Assumption: min(B(R), B(S)) <= M?

January 29, 2021

Hybrid Hash Join Algorithm (see book)

= Partition S into k buckets
t buckets S, ..., S, stay in memory

k-t buckets S;.1, ..., S to disk

= Partition R into k buckets
* First t buckets join immediately with S
* Rest k-t buckets go to disk

= Finally, join k-t pairs of buckets:
(Rf+1lsf+])l (Rt+215t+2)1 ooy (Rklsk)

January 29, 2021 CSE 444 - Winter 2020 30

Before We Go Into Query Plan
Costs... How do Updates Work?
(Insert/Delete)

Januar y 29, 2021 CSE 444 - Winter 2020

Example Using Delete

delete from R where a=l;

In SimpleDB, the Delete Operator calls

Query plan BufferPool.delete Tuple()
Delete Why not call HeapFile.deleteTuple() directly?
| ‘ Because there could also be indexes.
Filter (o 5=1) Need some entity that will decide all the
’ structures from where tuple needs to be
deleted
SeqScan

‘ BufferPool then calls HeapFile.deleteTuple()
R

January 29, 2021 CSE 444 - Winter 2020 46

Pushing Updates to Disk

= When inserting a tuple, HeapFile inserts it on a page
but does not write the page to disk

= When deleting a tuple, HeapFile deletes tuple from a
page but does not write the page to disk

= The buffer manager worries when to write pages to
disk (and when to read them from disk)

= When need to add new page to file, HeapFile adds
page to file on disk and then reads it through buffer
manager

January 29, 2021 47

sessionid
NumberOfSession
4 Date
#K1 | experimentin
Setup P ——
t T 7
lation Trial ",
dividual Setuphame
X {idald SetupType A
ey — B
NumberOfTrial
A%
FK3 | SubjectiD | -
Start I e
Duration .
NMarker RIS Worker 3 Worker 3
SetupMarker 2 A\ (R Worker 3 rker forker
Record edMovieFile N et = Ky &0 17
e ' Mensaw,yh% - szl Traditional el i
Q dben Y Aerys ‘ II . (a) Traditional parallel query plan
= Tywin
T y X . "II N pis
Trial_has_Timecourse [riat_tas_rrajectory 5 ’ —— "l p——rr—
saiime. Renlyims T —Eia -!
AAX . e | E—
i ; & e fTyrion S S — 7
it [| |2 e Ao == S Hpercune
i Cersél e > Shuffle
¢ ‘ . Podrick H
Uoras, KeviShae F
Timecourse [ratectory ~ 2
Walton JoffreMargaerygn
% | Timecoursein P | Tesjectoryin s MYIcSHE Gresor
BTN OlennaSandl (varie
Frequency Frequency « Bronn
SegmentiD SegmentiO . Melyg
KindOfata KindOtData Gendry iyn
MarkerD

gl ube shuffle-based parallel g

- o

Database System Internals

Query Plan Costs

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 - Winter 2020

Summary of External Join Algorithms

» Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

» Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

» Partitioned Hash: 3B(R)+3B(S);
- min(B(R),B(S)) <= M?

» Merge Join: 3B(R)+3B(S)
« B(R)+B(S) <= M?

Januar y 29, 2021 CSE 444 - Winter 2020

Summary of Query Execution

= For each logical query plan
* There exist many physical query plans
* Each plan has a different cost
* Cost depends on the data

= Additionally, for each query

* There exist several logical plans

= Next lecture: query optimization
* How to compute the cost of a complete plan?
* How to pick a good query plan for a query?

January 29, 2021 CSE 444 - Winter 2020 50

A Note About Skew

= Previously shown 2 pass join algorithms do not
work for heavily skewed data

= For a sort-merge join, the maximum number of
tuples with a Farticular join attribute should be
the number of tuples per page:

* This often isn’t the case: would need multiple
passes

January 29, 2021 52

Query Optimization Summary

Goal: find a physical plan that has minimal cost

/N\ /N\ G/N

oW X |

\] / \ 20
S T R S S

o
|
R T R
What is the cost of a plan?
For each operator, cost is function of CPU, 10, network bw
Total Cost = CPUCost + w5 |OCost+ wg,y BWCost

Cost of plan is total for all operators
In this class, we look only at |O

January 29, 2021 CSE 444 - Winter 2020 53

Query Optimization Summary

Goal: find a physical plan that has minimal cost

/N D(]\ /N
e \ / X1 i
< TN
R S T R S T R S T

January 29, 2021 CSE 444 - Winter 2020 54

Query Optimization Summary

Goal: find a physical plan that has minimal cost

/ B -
T \ N\ /PN

T R S T

Know how to compute cost if know cardinalities

January 29, 2021 CSE 444 - Winter 2020 55

Query Optimization Summary

Goal: find a physical plan that has minimal cost

] /N\ /PN
T S

R

Know how to compute cost if know cardinalities

January 29, 2021 CSE 444 - Winter 2020 56

Query Optimization Summary

Goal: find a physical plan that has minimal cost

AN LA AN

R T

Know how to compute cost if know cardinalities
« Eg. Cost(V 0 T) = 3B(V) + 3B(T)
« B(V) =T(V) / PageSize
* T(V) = T(o(R) = S)

Januar y 29, 2021 CSE 444 - Winter 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

O / N a8
o W > |
& \ L
R S T R S T R S T

Know how to compute cost if know cardinalities
« Eg. Cost(V v T) = 3B(V) + 3B(T)

« B(V) =T(V) / PageSize
* T(V) = T(o(R) = S)

Cardinality estimation problem: e.g. estimate T(o(R) x< S)

January 29, 2021 CSE 444 - Winter 2020 58

Database Statistics

= Collect statistical summaries of stored data

» Estimate size (=cardinality) in a bottom-up fashion

* This is the most difficult part, and still inadequate in
today’s query optimizers

= Estimate cost by using the estimated size

« Hand-written formulas, similar to those we used for
computing the cost of each physical operator

January 29, 2021

Database Statistics

» Number of tuples (cardinality) T(R)
» Indexes, number of keys in the index V(R,a)
* Number of physical pages B(R)

= Statistical information on attributes
* Min value, Max value, V(R,a)

» Histograms

= Collection approach: periodic, using sampling

January 29, 2021

Size Estimation Problem

Q = SELECT list
FROM R1, ..., Rn
WHERE cond,; AND cond, AND . . . AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(Q)

How can we do this ? Note: doesn’t have to be exact.

January 29, 2021

Size Estimation Problem

Q = SELECT list
FROM R1, ..., Rn
WHERE cond,; AND cond, AND . . . AND cond,

Remark: T(Q) £ T(R1) x T(R2) x ... x T(Rn)

January 29, 2021

Size Estimation Problem

Q = SELECT list
FROM R1, ..., Rn
WHERE cond,; AND cond, AND . . . AND cond,

Remark: T(Q) £ T(R1) x T(R2) x ... x T(Rn)

Key idea: each condition reduces the size
of T(Q) by some factor, called selectivity factor

January 29, 2021

Selectivity Factor

= Each condition cond reduces the size by some
factor called selectivity factor

= Assuming independence, multiply the selectivity
factors

January 29, 2021

R(A,B)
S(B,C)
T(C,D)

Q =SELECT*
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S)= 200k, T(T) = 10k

Selectivity of R.B=S.B is 1/3
Selectivity of S.C =T.Cis 1/10
Selectivity of R A< 40 is %

Q: What is the estimated size of the query output T(Q) ?

January 29, 2021

CSE 444 - Winter 2020 65

R(A,B) Q = SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) =10k
Selectivity of R.B=S.B is 1/3
Selectivity of S.C =T.Cis 1/10
Selectivity of RA<40is 7

Q: What is the estimated size of the query output T(Q) ?

A T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * % =1012

CSE 444 - Winter 2020 66

January 29, 2021

Selectivity Factors for Conditions

A= I* opce(R) */
« Selectivity = 1/V(R,A)

January 29, 2021

Selectivity Factors for Conditions

A= I* opce(R) */
« Selectivity = 1/V(R,A)

sA<cC [* Gace(R)¥/
+ Selectivity = (¢ - Low(R, A))/(High(R,A) - Low(R,A))

January 29, 2021

Selectivity Factors for Conditions

A= I* opce(R) */
« Selectivity = 1/V(R,A)

sA<cC [* Gace(R)¥/
+ Selectivity = (¢ - Low(R, A))/(High(R,A) - Low(R,A))

=A=B /*R[><]A=BS*/

» Selectivity = 1/ max(V(R,A),V(S,A))
* (will explain next)

January 29, 2021

» Containment of values: if V(R,A) <= V(S,B), then
all values R.A occurin S.B

 Note: this indeed holds when A is a foreign key in R,
and BisakeyinS

» Preservation of values: for any other attribute C,
V(R <z S, C) = V(R, C) (or V(S, C))
* Note: we don’t need this to estimate the size of the
join, but we need it in estimating the next operator

January 29, 2021 CSE 444 - Winter 2020 70

Selectivity of R Dy_g S

Assume V(R,A) <= V(S,B)

* Atuple tin R joins with T(S)/V(S,B) tuple(s) in S

= Hence T(R g S) = T(R) T(S) / V(S,B)

T(R as S) = T(R) T(S) / max(V(R,A),V(S,B))

Januar y 29, 2021 CSE 444 - Winter 2020

Complete Example

Supplier(sno, sname, scity, sstate)
Supply(sno, pno, quantity)

Suppy.sno references

» Some statistics Supplier.sno
« T(Supplier) = 1000 records
Supply) = 10,000 records
Supplier) = 100 pages
Supply) = 100 pages

- B

T(
(
. B(
(

SELECT sname
FROM Supplier x, Supply y
WHERE x.sno = y.sno
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

« V(Supplier,scity) = 20, V(Suppliers,state) = 10

* V(Supply,pno) = 2,500
 Both relations are clustered

=M =11

January 29, 2021 CSE 444 - Winter 2020

Physical Query Plan 1

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M =11
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) =10 Suppy.sno references
V(Supply,pno) =2,500 Supplier.sno

On the fl sname - :
(On the fly) T Selection and project on-the-fly

-> No additional cost.
(On the fly)

Uscity=‘SeattIe’ N sstate="WA' A pno=2

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)

(Nested loop] =100+ 100 * 100/ (11-1)
memory optimized) sho=sno =1,100 I/Os

Supplier Supply

(File scan) (File scan)

January 29, 2021 CSE 444 - Winter 2020 75

Physical Query Plan 2

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M =11
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10 Suppy.sno references
V(Supply,pno) = 2,500 Supplier.sno
Tame (d) Total cost
(On the fly) =100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
(Sort-merge join +1+1 gcg
. . +0 d
In memory if possible] (c)
) Sno = sno Total cost =204 1/Os
(Scan
write to T1) (Scan
(a) O scity="Seattle’ A sstate="WA (b) apnozzwrlte to T2)
Supplier Supp|y
(File scan) (File scan)

January 29, 2021 CSE 444 - Winter 2020 76

Plan 2 with Different Numbers

V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

What if we had:

10K pages of Supplier Tspame (d) Total cost

10K pages of Supply =10000 + 50 (a)

+ 10000 + 4 (b)
(Sort-merge join +3*50 + 4 (c)
In memory if possible) [(©) +0 (d)
Sno = sho Total cost = 20,208 I/Os

(Scan /
write to T1) \ (Scan write to T2)

(@) o scity="Seattle’ A sstate="WA

Upno 2
3 l i ‘ Need to do a two-
.upp ler Supply pass sort algorithm
(File scan) (File scan)

January 29, 2021 CSE 444 - Winter 2020 77

Physical Query Plan 3

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=11
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10 Suppy.sno references
V(Supply,pno) =2,500 Supplier.sno
(On the fly) (d) Tsname Total cost
=1(a)
(On the fly) +4 (b)
(C) o scity="Seattle’ A sstate="WA +0 (C)
+0(d)

‘ Total cost =5 1/Os

b
O === (Index nested loop)

Remember: Suppy.sno references
(Use hash mdex 4 tuples Supplier.sno
Upno 2

E;[Jr)r)ISI ES[JF)F)IiEBr
(Hash index on pno) (Hash index on sno)
Assume: clustered Clustering does not matter

January 78

» Statistics on data maintained by the RDBMS

» Makes size estimation much more accurate
(hence, cost estimations are more accurate)

January 29, 2021

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =7

January 29, 2021

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =

< <

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 /50 = 3000

January 29, 2021 81

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50

min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =7

Age:

0-20

20-29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

January 29, 2021

82

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

0-age=48(Emp0|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Estimate ~1200

Estimate = 1*80 + 5*500 = 2580

January 29, 2021 CSE 444 - Winter 2020 83

Types of Histograms

* How should we determine the bucket boundaries
in a histogram?

January 29, 2021

Types of Histograms

* How should we determine the bucket boundaries
in a histogram?

» Eq-Width

= Eg-Depth

= Compressed

= V-Optimal histograms

January 29, 2021

Employee(ssn, name, age)

Eg-width:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eqg-depth:

Age: 0-33 33-38 38-43 43-45 45-54 > 54
Tuples 1800 2000 2100 2200 1900 1800

January 29, 2021

Compressed: store separately highly frequent values: (48,1900)

CSE 444 - Winter 2020

86

V-Optimal Histograms

= Defines bucket boundaries in an optimal way, to
minimize the error over all point queries

= Computed rather expensively, using dynamic
programming

= Modern databases systems use V-optimal
histograms or some variations

January 29, 2021

Difficult Questions on Histograms

= Small number of buckets
« Hundreds, or thousands, but not more
« WHY 2

= Not updated during database update, but
recomputed periodically
* WHY ¢

= Multidimensional histograms rarely used
* WHY ¢

January 29, 2021

Difficult Questions on Histograms

= Small number of buckets
« Hundreds, or thousands, but not more

» WHY?2 All histograms are kept in main memory during
query optimization; plus need fast access

= Not updated durir:ig database update, but
recomputed periodically

« WHY? Histogram update creates a write conflict;
would dramatically slow down transaction throughput

= Multidimensional histograms rarely used

* WHY?2 Too many possible multidimensional histograms,
unclear which ones to choose

January 29, 2021

