CS

E 444 Database Internals

Section S
Transactions

Today

. Seﬁa\\zab\\h‘y and Conflict Seﬁa\\zab\\h‘y
- Precedence gmph

- Two-Phase Locking
- Strict two phase locking

. Lab 3 - Transactions

Problem 1. Ser\a\\zab\\\’ry and

Lockmg ot 1S

. Ser‘\a\‘\zab'\\'\’r\/

- 15 this schedule conflict serialf © Conflict Serializability?

R, (A)
R, (B)
Cl
R (B)
W, (B)

Review: (Conflict) Serializable
Schedule

« A schedule is serializable if it is equ'\va\en’r t0 a serial
schedule

« A schedule is conflict serializable if it can be
Transformed into a serial schedule by a series of
swappings of adjacen‘r non—conﬂ'\cﬂng actions

Review: (Conflict) Serializable
Schedule

« A schedule is serializable if it is equ'\va\en‘r t0 a serial
schedule

« A schedule is conflict serializable if it can be
Transformed into a serial schedule by a series of
swappings of adjacen‘r non—conﬂ'\c‘r'\ng actions

Example: [\

r,(A); w,(A); 1,(A); W,(A); r,(B); w,(B); ,(B); w,(B)

1 2

1

>

r.(A); w,(A); r.(B); w.(B); 1,(A); W,(A); r(B); w,(B)

Problem 1 Ser\a\\zab\\ﬁy and
Locking

- |5 this schedule conflict serializable?

R, (A)

R.(B)

. No.
e The precedence gmph contains a cyc\e

W, (A), R (A)

R,(B) W,(B)

.+ 90, use 2PL .
a Or‘\g‘ma\ schedule below

R, (A)

R, (B)

R,(B)

W,(B)

.+ 90, use 2PL .

a Or‘\g‘ma\ schedule belo What 1s

- Two Phase Locng
- Strict Two Phase LocK\ng?

R, (A)
R, (B)
Cl
R,(B)
W (B)

Review:

(Strich) Two Phase Locking (2PL)

The 2PL rule:
N every Transaction, all lock requests mMust
precede all unlock requesTs

Strict 2PL
All locks held by a Transaction are released

when the ftransaction is completed

- Ensures that schedules are yecoverable
- Transactions commit on\y after all Transactions
whose changes ’rhey read also commit

g
- Avoids ca§cad\ng rollbacks

- How can 2PL can ensure a

conflict-serializable schedule?
a Or‘\g‘ma\ schedule below

R, (A)

R.(B)

Ry(B)

W,(B)

L,(A) : Block

L,(A) : Block

L,(A) : Block

L,(A) : Granted
R,(A)
L,(B)
R,(B)
U,(A)
u,(B)

C

1

L,(A) : Block

|s this strict 2PL7?

No, release locks after commit

L,(A) : Granted
R,(A)
L,(B)
R,(B)
U,(A)
u,(B)

C

1

Lab 3 - Transactions
e NO STEAL / FORCE buffer management po\'\cy
o you shouldn't evict d'\r’ry(updmed) pages from the buffer

poo\ it ’rhey are locked b\/ an uncommitted transaction.
(this is NO STEAD)

o on fransaction commit, you should force dirty pages o
disk (eg, write the pages out) (this is FORCE)
e Recommend - locking at page level

o you can acquire and release locks in BufferPool.getPageO
Instead of adding calls to each of your operators

o Might have to change previous impletmentations to access
pages using BufferPool.getPageO

Lab 3 - Transactions (contd)

e You need to implement shared and exclusive locks
o Before read, it must have a shared lock
o Before write, it must have an exclusive lock
o Multiple transactions can have a shared lock
0 On\y one transaction may have an exclusive lock on an
object
o If transaction tis the only transaction holding a shared
lock on an object o, 1 may upgrade its lock on o to an
exclusive lock
e You need to implement strict two-phase locking
o fransactions should acquire the appropriate type of' lock
on any object before accessing that object
o Transaction shouldnt release any locks until after the
Transaction commits.

Lab 3 - Transactions (contd)

e You will need to implement a LockManager class that will
hold data structures to keep track of which locks each
Transaction holds and that check to see if a lock should be
granted to a fransaction when it is requested

e Read about Synchronization in Java, and use the

synchronized keyword in appropriate places in LockManager

e You will have 10 also throw appropriate exceptions like
TransactionAbortedE xception

Lab 3 - Transactions (contd)

e Handling deadlocks
o implement a simple timeout policy that aborts a
transaction if it has not completed after a given period of
Time
o implement a cyc\e—deTeCnon ina dependency graph data
structure, if cyc\e exists when granting a new lock abort
sormething.
e Design Choices:
o Locking Gmnu\drny: page-level vs tuple-level (our tests
assutme page-leveD
o Deadlock Detection: timeout vs dependency graphs
o Deadlock Resolution: aborting yourse\F vs aborting others
e Read the spec Cdreﬂ)\\y for more details about various
Mmethods and edge cases.

