
CSE 444: Database Internals

Section 5:
Transactions

Today
• Serializability and Conflict Serializability

– Precedence graph

• Two-Phase Locking
– Strict two phase locking

• Lab 3 - Transactions

Problem 1: Serializability and
Locking

• Is this schedule conflict serializable?
What is
• Serializability
• Conflict Serializability?

Review: (Conflict) Serializable
Schedule

• A schedule is serializable if it is equivalent to a serial
schedule

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Review: (Conflict) Serializable
Schedule

• A schedule is serializable if it is equivalent to a serial
schedule

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Problem 1: Serializability and
Locking

• Is this schedule conflict serializable?

• No.

• The precedence graph contains a cycle

• So, use 2PL ...
❑ Original schedule below

• So, use 2PL ...
❑ Original schedule below What is

• Two Phase Locking
• Strict Two Phase Locking?

Review:
(Strict) Two Phase Locking (2PL)
The 2PL rule:
In every transaction, all lock requests must

precede all unlock requests

Strict 2PL:
All locks held by a transaction are released

when the transaction is completed
– Ensures that schedules are recoverable

• Transactions commit only after all transactions
whose changes they read also commit

– Avoids cascading rollbacks

• How can 2PL can ensure a
conflict-serializable schedule?
❑ Original schedule below

Is this strict 2PL?

No, release locks after commit

Lab 3 - Transactions
● NO STEAL / FORCE buffer management policy

○ you shouldn’t evict dirty(updated) pages from the buffer
pool if they are locked by an uncommitted transaction.
(this is NO STEAL)

○ on transaction commit, you should force dirty pages to
disk. (e.g., write the pages out) (this is FORCE)

● Recommend - locking at page level
○ you can acquire and release locks in BufferPool.getPage(),

instead of adding calls to each of your operators
○ Might have to change previous implementations to access

pages using BufferPool.getPage()

Lab 3 - Transactions (contd.)
● You need to implement shared and exclusive locks

○ Before read, it must have a shared lock
○ Before write, it must have an exclusive lock
○ Multiple transactions can have a shared lock
○ Only one transaction may have an exclusive lock on an

object
○ If transaction t is the only transaction holding a shared

lock on an object o, t may upgrade its lock on o to an
exclusive lock

● You need to implement strict two-phase locking
○ transactions should acquire the appropriate type of lock

on any object before accessing that object
○ transaction shouldn’t release any locks until after the

transaction commits.

Lab 3 - Transactions (contd.)
● You will need to implement a LockManager class that will

hold data structures to keep track of which locks each
transaction holds and that check to see if a lock should be
granted to a transaction when it is requested.

● Read about Synchronization in Java, and use the
synchronized keyword in appropriate places in LockManager

● You will have to also throw appropriate exceptions like
TransactionAbortedException

Lab 3 - Transactions (contd.)
● Handling deadlocks

○ implement a simple timeout policy that aborts a
transaction if it has not completed after a given period of
time

○ implement a cycle-detection in a dependency graph data
structure, if cycle exists when granting a new lock abort
something.

● Design Choices:
○ Locking Granularity: page-level vs tuple-level (our tests

assume page-level)
○ Deadlock Detection: timeout vs dependency graphs
○ Deadlock Resolution: aborting yourself vs aborting others

● Read the spec carefully for more details about various
methods and edge cases.

