
CSE 444: Database Internals

Section 3:
Operator Algorithms

Notations

• B(R) = # of blocks (i.e. pages) for relation R
• T(R) = # of tuples in relation R
• V(R, a) = # of distinct values of attribute a
• Memory M

Algorithms for Group By and
Aggregate Operators

• Modified Tweet Example:
Tweet(tid, uid, tlen) tlen = tweet length

SELECT uid, MIN(tlen)
FROM Tweet
GROUP BY uid

One pass, hash-based grouping

4

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

M = 3

One pass, hash-based grouping

5

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

Main memory data structure
(holds minimum for every

group)

5, 1, 7 4, 2, 10

H = uid % 2

1, 7

2, 10

M = 3

One pass, hash-based grouping

6

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing
tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

1, 3, 3 3,1, 5

H = uid % 2

1, 5 3, 3

2, 10

Minimum
updated

from 7 to 5

M = 3

Discussion
Cost:
• Clustered?
• Unclustered?

Which operator method does the grouping?
open(), next(), or close()?

What to do for AVG(tlen)?

Discussion
Cost:
• Clustered?

- B(R): assuming M – 1 pages can hold all groups – tuples for groups can be
shorter or larger than original tuples

• Unclustered?
- Also B(R)

Which method does the grouping:
open(), next(), or close()?
• Cannot return anything until the entire data is read. Open() needs to do

grouping

What to do for AVG(tlen)?
• Keep both SUM(tlen) and COUNT(*) for each group in memory

Two pass, hash-based grouping

9

Tweet

Showing
tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Two pass, hash-based grouping

10

Tweet

Showing
tid, uid, tlen

5, 1, 7 4, 2, 10

H = uid % 2

5, 1, 7

4, 2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

No aggregation is performed in the first pass

Two pass, hash-based grouping

11

Tweet

Showing
tid, uid, tlen

1, 3, 3 3, 5, 5

H = uid % 2

5, 1, 7 1, 3, 3

4, 2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

No aggregation is performed in the first pass

Flush!

Two pass, hash-based grouping

12

Tweet

Showing
tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Final buffer and disk after pass 1

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Two pass, hash-based grouping

13

Tweet

Showing
tid, uid, tlen

5, 1, 7 1, 3, 3

1, 7 3, 3

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Two pass, hash-based grouping

14

Tweet

Showing
tid, uid, tlen

3, 5, 5 7, 3, 1

1, 7 3, 3

5, 5

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 104, 2, 10 2, 2, 5

Update min

Discussion

Cost?
• 3B(R)

Assumptions?
– Need to hold all distinct values in the same bucket in M-1
– Assuming uniformity, B(R) <= M2 is safe to assume

• i.e. B(R)/M <= M

Two pass, sort-merge-based grouping

16

Tweet

Showing
tid, uid, tlen

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3 ,5, 5

7, 3, 1 2, 2, 5

6, 4, 9 8, 4, 10

Two pass, sort-merge-based grouping

17

Tweet

Showing
tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

2, 2, 5

7, 3, 1

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

1, 3, 3

3, 5, 5

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

Two pass, sort-merge-based grouping

18

Tweet

Showing
tid, uid, tlen M = 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

Two pass, sort-merge-based grouping

19

Tweet

Showing
tid, uid, tlen

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2:
• Load first blocks from all runs
• Find minimum of each key by “Combine” approach in
merge-sort
• Repeatedly find the least value of the sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

Not showing the outputs in output buffer

(uid, min(tlen))
(1, 7)

M = 3

Two pass, sort-merge-based grouping

20

Tweet

Showing
tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 3: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merge-based grouping

21

Tweet

Showing
tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merge-based grouping

22

Tweet

Showing
tid, uid, tlen M = 3

2, 2, 5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merge-based grouping

23

Tweet

Showing
tid, uid, tlen M = 3

2, 2, 5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 5)
(3, 3)

Not showing the outputs in output buffer

Two pass, sort-merge-based grouping

24

Tweet

Showing
tid, uid, tlen M = 3

7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 5)
(3, 3)

Not showing the outputs in output buffer

Two pass, sort-merge-based grouping

25

Tweet

Showing
tid, uid, tlen M = 3

7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the least value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3, 5, 5

7, 3, 1 2, 2, 5

5, 1, 7 4, 2, 10 2, 2, 5 1, 3, 3 7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 5)
(3, 1)
(4, 9)
(5, 5)

Not showing the outputs in output buffer

Discussion

Cost?
• 3B(R)

Assumptions?
– Need to hold one block from each run in M pages
– B(R) <= M2

One pass vs. Two pass

• One pass:
– smaller disk I/O cost

• e.g. B(R) for one-pass hash-based aggregation
– Handles smaller relations

• e.g. B(R) <= M

• Two/Multi pass:
– Larger disk I/O cost

• e.g. 3B(R) for two-pass hash-based aggregation
– Can handle larger relations

• e.g. B(R) <= M2

Review for Joins

• Two-pass Hash-based Join
– Cost: 3B(R) + 3B(S)
– Assumption: Min(B(R), B(S)) <= M2

• Two-pass Sort-merge-based Join
– Implementation:

• Cost: 5B(R) + 5B(S)
– For R, S: sort runs/sublists (2 I/O, read + write)
– Merge sublists to have entire R, S sorted individually (2 I/O,

read + write)
– Join by combining R and S (only read, write not counted - 1

I/O)

Homework 2
• Problem 1

– B+ Trees (inserting/deleting/lookups)

• Problem 2
– Operator Algorithms

• Problem 3
– Multi-Pass Algorithms

Lab 2: Operator
• TODO: Implement Operator Filter, Join and

Aggregate
– open()
– close()
– hasNext()
– next()
– fetchNext()

Lab2: Aggregator

• TODO: Implement
IntegerAggregator and
StringAggregator
– mergeTupleIntoGroup(): merge a

tuple into aggregate
– iterator(): return a OpIterator

over group aggregate results

