
1May 14, 2021

Database System Internals

CSE 444 - Spring 2021

Transactions: Recovery (part 3)

Force/No-steal (most strict)

§FORCE: Pages of committed transactions must be
forced to disk before commit

§NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

CSE 444 - Spring 2021 3

Easy to implement (how?) and ensures atomicity

May 14, 2021

No-Force/Steal (least strict)

§NO-FORCE: Pages of committed transactions
need not be written to disk

§STEAL: Pages of uncommitted transactions may
be written to disk

CSE 444 - Spring 2021 4

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

May 14, 2021

5

Write-Ahead Log (WAL)

The Log: append-only file containing log records
§Records every single action of every TXN
§Forces log entries to disk as needed
§After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Spring 2021May 14, 2021

Policies and Logs

CSE 444 - Spring 2021 6

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

May 14, 2021

7

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

CSE 444 - Spring 2021May 14, 2021

8

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

NO-STEAL

CSE 444 - Spring 2021

RULE: OUTPUT after COMMIT
May 14, 2021

9

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

§Hence: OUTPUTs are done late

CSE 444 - Spring 2021

NO-STEAL

May 14, 2021

Comparison Undo/Redo

§ Undo logging:
• OUTPUT must be done early
• If <COMMIT T> is seen, T definitely has written all its data to disk

(hence, don’t need to redo) – inefficient

§ Redo logging
• OUTPUT must be done late
• If <COMMIT T> is not seen, T definitely has not written any of its

data to disk (hence there is not dirty data on disk, no need to undo)
– inflexible

§ Would like more flexibility on when to OUTPUT: undo/redo
logging (next)

CSE 444 - Spring 2021 11

Steal/Force

No-Steal/No-Force

Steal/No-Force

May 14, 2021

Undo/Redo Logging

Log records, only one change
§ <T,X,u,v>= T has updated element X, its old

value was u, and its new value is v

CSE 444 - Spring 2021 12May 14, 2021

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative to
<COMMIT T>

CSE 444 - Spring 2021 13May 14, 2021

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT
14May 14, 2021 CSE 444 - Spring 2021

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
§Redo all committed transaction, top-down
§Undo all uncommitted transactions, bottom-up

CSE 444 - Spring 2021 15May 14, 2021

Recovery with Undo/Redo Log

CSE 444 - Spring 2021 16

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

May 14, 2021

ARIES
Undo/Redo protocol

CSE 444 - Spring 2021 17May 14, 2021

18

Aries

§ARIES pieces together several techniques into a
comprehensive algorithm

§Developed at IBM Almaden, by Mohan
§ IBM botched the patent, so everyone uses it now
§Several variations, e.g. for distributed

transactions

CSE 444 - Spring 2021May 14, 2021

21

ARIES Recovery Manager

Log entries:
§ <START T> -- when T begins
§Update: <T,X,u,v>

• T updates X, old value=u, new value=v
• Logical description of the change

§ <COMMIT T> or <ABORT T> then <END>
§ <CLR> – we’ll talk about them later.

CSE 444 - Spring 2021May 14, 2021

22

ARIES Recovery Manager

Rule:
§ If T modifies X, then <T,X,u,v> must be written

to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

CSE 444 - Spring 2021May 14, 2021

23

LSN = Log Sequence Number

§LSN = identifier of a log entry
• Log entries belonging to the same TXN are linked with

extra entry for previous LSN

§Each page contains a pageLSN:
• LSN of log record for latest update to that page

CSE 444 - Spring 2021May 14, 2021

24

ARIES Data Structures

§Active Transactions Table
• Lists all active TXN’s
• For each TXN: lastLSN = its most recent update LSN

§Dirty Page Table
• Lists all dirty pages
• For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty
§Write Ahead Log

• LSN, prevLSN = previous LSN for same txn

CSE 444 - Spring 2021May 14, 2021

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions

P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

25May 14, 2021 CSE 444 - Spring 2021

26

ARIES Normal Operation

T writes page P
§What do we do ?

CSE 444 - Spring 2021May 14, 2021

27

ARIES Normal Operation

T writes page P
§What do we do ?

• Write <T,P,u,v> in the Log
• pageLSN=LSN
• prevLSN=lastLSN
• lastLSN=LSN
• recLSN=if isNull then LSN

CSE 444 - Spring 2021May 14, 2021

28

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§What do we do ?

Buffer manager wants INPUT(P)
§What do we do ?

CSE 444 - Spring 2021May 14, 2021

29

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§Flush log up to pageLSN
§Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
§What do we do ?

CSE 444 - Spring 2021May 14, 2021

30

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§Flush log up to pageLSN
§Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
§Create entry in Dirty Pages table

recLSN = NULL

CSE 444 - Spring 2021May 14, 2021

31

ARIES Normal Operation

Transaction T starts
§What do we do ?

Transaction T commits/aborts
§What do we do ?

CSE 444 - Spring 2021May 14, 2021

32

ARIES Normal Operation

Transaction T starts
§Write <START T> in the log
§New entry T in Active TXN;

lastLSN = null
Transaction T commits
§What do we do ?

CSE 444 - Spring 2021May 14, 2021

33

ARIES Normal Operation

Transaction T starts
§Write <START T> in the log
§New entry T in Active TXN;

lastLSN = null
Transaction T commits
§Write <COMMIT T> in the log
§Flush log up to this entry
§Write <END>

CSE 444 - Spring 2021May 14, 2021

34

Checkpoints

Write into the log

§Entire active transactions table
§Entire dirty pages table

CSE 444 - Spring 2021

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

May 14, 2021

36

ARIES Recovery

1. Analysis pass
• Figure out what was going on at time of crash
• List of dirty pages and active transactions

2. Redo pass (repeating history principle)
• Redo all operations, even for transactions that will not commit
• Get back to state at the moment of the crash

3. Undo pass
• Remove effects of all uncommitted transactions
• Log changes during undo in case of another crash during undo

CSE 444 - Spring 2021May 14, 2021

37

ARIES Method Illustration

[Figure 3 from Franklin97]

CSE 444 - Spring 2021

First undo and first redo log entry might be
in reverse order

May 14, 2021

38

1. Analysis Phase

§ Goal
• Determine point in log where to start REDO
• Determine set of dirty pages when crashed

• Conservative estimate of dirty pages
• Identify active transactions when crashed

§ Approach
• Rebuild active transactions table and dirty pages table
• Reprocess the log from the checkpoint

• Only update the two data structures
• Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Spring 2021May 14, 2021

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

firstLSN= ??? Where do we start
the REDO phase ?

39CSE 444 - Spring 2021May 14, 2021

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

firstLSN=min(recLSN)

40CSE 444 - Spring 2021May 14, 2021

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

pageID recLSN

transID lastLSN

Replay
history

firstLSN

41CSE 444 - Spring 2021May 14, 2021

2. Redo Phase

Main principle: replay history
§Process Log forward, starting from firstLSN
§Read every log record, sequentially
§Redo actions are not recorded in the log
§Needs the Dirty Page Table

CSE 444 - Spring 2021 42May 14, 2021

43

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
§Redo the action P=u and WRITE(P)
§Only redo actions that need to be redone

CSE 444 - Spring 2021May 14, 2021

44

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
§ If P is not in Dirty Page then no update
§ If recLSN > LSN, then no update
§Read page from disk:

If pageLSN >= LSN, then no update
§Otherwise perform update

CSE 444 - Spring 2021May 14, 2021

45

2. Redo Phase: Details

What happens if system crashes during REDO ?

CSE 444 - Spring 2021May 14, 2021

46

2. Redo Phase: Details

What happens if system crashes during REDO ?

We REDO again ! The pageLSN will ensure that
we do not reapply a change twice

CSE 444 - Spring 2021May 14, 2021

3. Undo Phase

§Cannot “unplay” history, in the same way as we
“replay” history

§WHY NOT ?

CSE 444 - Spring 2021 47May 14, 2021

3. Undo Phase

§Cannot “unplay” history, in the same way as we
“replay” history

§WHY NOT ?
• We can only undo only the loser transactions
• Need to support ROLLBACK: selective undo, for one

transaction

CSE 444 - Spring 2021 48May 14, 2021

3. Undo Phase

Main principle: “logical” undo
§Start from end of Log, move backwards
§Read only affected log entries
§Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
§CLRs are redone, but never undone

CSE 444 - Spring 2021 49May 14, 2021

3. Undo Phase: Details

§ “Loser transactions” = uncommitted
transactions in Active Transactions Table

§ToUndo = set of lastLSN of loser transactions

CSE 444 - Spring 2021 50May 14, 2021

3. Undo Phase: Details

While ToUndo not empty:
§ Choose most recent (largest) LSN in ToUndo
§ If LSN = regular record <T,P,u,v>:

• Write a CLR where CLR.undoNextLSN = LSN.prevLSN
• Undo v

§ If LSN = CLR record:
• Don’t undo !

§ if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Spring 2021 51May 14, 2021

52

3. Undo Phase: Details

[Figure 4 from Franklin97]

CSE 444 - Spring 2021May 14, 2021

53

3. Undo Phase: Details

What happens if system crashes during UNDO ?

CSE 444 - Spring 2021May 14, 2021

54

3. Undo Phase: Details

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a
REDO record: we simply redo the undo

CSE 444 - Spring 2021May 14, 2021

