Sessionld

NumberOfsession

Date
X1 [Exparimentin

f setwp
7 [setupio
lation Trial
dividual Setuphiame
n
a2 SetupType
#1 |Sessionid
NumberOfTrial
2 [setupio
#s | Subjectin
st
ouration
NMarker
SetupMarker
Record edMovieFile
Note
Trial_has_Timecoursa [riat_tas_rrajectory
FKL | TrialiD FKL | TeiallD
#xz | rimecoursein #i2 | Trajectoryio

v

v

KindOfData

N

Timecourse [ratectory

¢ | Timecoursein o | Tesiectoryi
Frequency frequency
SegmentiD segmentid

KindotData
MarkerdD
NFrames

gl

Database

MelisandrTheon

B A

Gendry

Walton

Sandor

\‘\m

X S
insaime,, RNty
AN Ly ivrion

A\ ay
Cerséi
Lora:

s
JoffreMargaeryan
Myrcelia Gregor

Meyn
iiyn

Transactions:

Podrick

KevzShae

Bronn

|

m.L"

mml

NS

B
i

T~

N\
WE

N

| "m

Sianiom 4

Worker 3

Worker 3 Worker 3

(a) Traditional parallel query plan

— 4

HyperCube
Shuffle

gl ube shuffle-based parallel g

System Internals

Recovery (part 1

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

CSE 444 - Winter 2021

Main textbook (Garcia-Molina)
»Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)

= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and
Engineering, A. Tucker, ed., CRC Press, Boca

Raton, 1997.

May 10, 2021 CSE 444 - Winter 2021 K

Transaction Management

Two parts:
= Concurrency control: ACID
* Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

May 10, 2021

Type of Crash

Prevention

Wrong data entry

Constraints and
Data cleaning

Disk crashes

Redundancy:
e.g. RAID, archive

Data center failures

Remote backups or

replicas
System failures: DATABASE
e.g. power RECOVERY

May 10, 2021

CSE 444 - Winter 2021

System Crash

May 10, 2021

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

UPDATE Account2
SET balance = balance + 500
COMMIT

CSE 444 - Winter 2021

System Failures

= Each transaction has internal state

* \When system crashes, internal state is lost
* Don’t know which parts executed and which didn’t
* Need ability to undo and redo

May 10, 2021

Buffer Manager Review

READ
WRITE Page requests from higher-level code

Files and access methods
Buffer pool Buffer pool manager

Disk page
P Main
Free frame memory

INPUT choice of frame dictated
OUTPUT by replacement policy

Disk = collection i 1]
of blocks page corresponds

Data must be in RAM for DBMS to operate on it! to 1 disk block
Buffer pool = table of <frame#, pageid> pairs
May 10, 2021

CSE 444 - Winter 2021

Buffer Manager Review

» Enables higher layers of the DBMS to assume that
needed data is in main memory

= Caches data in memory. Problems when crash
OCCuUrs:

1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk

May 10, 2021

Transactions

» Assumption: the database is composed of
elements.

= 1 element can be either:
* 1 page = physical logging
* 1 record = logical logging

" In Lab 4 we use page-level elements

May 10, 2021 CSE 444 - Winter 2021 10

Primitive Operations of Transactions

« READ(X, 1)

« copy element X to transaction local variable t

= WRITE(X,1)

 copy transaction local variable t to element X

= INPUT(X)

* read element X to memory buffer

=« OUTPUT(X)

o write element X to disk

May 10, 2021 CSE 444 - Winter 2021 11

Running Example

BEGIN TRANSACTION
READ(A,t);
t:=12; Initially, A=B=8.
WRlTE(A,t); Atomicity requires that either
: (1) T its and A=B=16,
READ(B’t)’ (2)T ggrensmr:ost acrclmmit and AZrB=8.
t=1"2;
WRITE(B, 1)
COMMIT;

May 10, 2021 CSE 444 - Winter 2021 12

Running Example

BEGIN TRANSACTION

READ(AY);

t:=12; Initially, A=B=8.

WRlTE(A,t); Atomicity requires that either
READ(B); (2)T doss not commit and A<E=8.
t/\'/:\WiII look at various crash scenarios

CO

What behavior do we want in each case?

May 10, 2021 CSE 444 - Winter 2021 (K

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 14

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 15

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 16

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 17

c |00 |00 | 0O
c |00 |00 | 0O

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8
READ(A,1) 8 8

t:=t*2 8 8
WRITE(A,1) 8 8
INPUT(B) 8 8
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 18

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8
READ(A,1) 8 8

t:=t*2 8 8
WRITE(A,1) 8 8
INPUT(B) 8 8
READ(B,t) 8 8
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 19

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8
READ(A,1) 8 8

t:=t*2 8 8
WRITE(A,1) 8 8
INPUT(B) 8 8
READ(B,t) 8 8
t:=t*2 8 8
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 20

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8
READ(A,1) 8 8

t:=t*2 8 8
WRITE(A,1) 8 8
INPUT(B) 8 8
READ(B,t) 8 8
t:=t*2 8 8
WRITE(B,t) 8 8
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 21

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 22

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |00 |0 |0 [0 |0 |0

-
(o))

Transaction Buffer pool Disk

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021 CSE 444 - Winter 2021 23

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |00 |0 |0 [0 |0 |0

RN
(@)}

RN
(@)}
-_—
(o2}

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

c |00 |00 |0 |0 [0 |0 |0

OUTPUT(A)

RN
(@)}

c |00 |00 | 0O |0 |0 [0 |0 |0

OUTPUT(B)

RN
(@)}

COMMIT

May 10, 2021

CSE 444 - Winter 2021

24

Is this bad ?

Yes it’s bad: A=16, B=8....

Action
INPUT(A)

Disk A

Disk B

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

c |00 |00 |0 |0 [0 |0 |0

OUTPUT(A)

RN
(@)}

c |00 |00 | 0O |0 |0 [0 |0 |0

OUTPUT(B)

RN
(@)}

COMMIT

May 10, 2021

CSE 444 - Winter 2021

25

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

c |00 |00 |0 |0 [0 |0 |0

OUTPUT(A)

RN
(@)}

c |00 |00 |00 |0 |0 [0 |0 |0

OUTPUT(B)

RN
(@)}

I

COMMIT

May 10, 2021

CSE 444 - Winter 2021

26

Is this bad ? Yes it's bad: A=B=16, but not committed

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 10, 2021

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |00 |0 |0 [0 |0 |0

RN
(@)}

RN
(@)}
RN
O

CSE 444 - Winter 2021 27

Is this bad ?

Action Disk A | Disk B
INPUT(A)
READ(A,1)

t:=t*2

WRITE(A,1)
INPUT(B)
READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 10, 2021 CSE 444 - Winter 2021 28

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |00 |0 |0 [0 |0 |0

RN
(@)}

RN
(@)}
RN
(@)}

Is this bad ? No: that's OK

Action Disk A | Disk B
INPUT(A)
READ(A,1)

t:=t*2

WRITE(A,1)
INPUT(B)
READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 10, 2021 CSE 444 - Winter 2021 29

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |00 |0 |0 [0 |0 |0

RN
(@)}

RN
(@)}
RN
(@)}

' OUTPUT can also happen after COMMIT (details coming) -

Action
INPUT(A)

Disk A

Disk B

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |0 |0 [0 |0C |0

COMMIT

OUTPUT(A)

16

OUTPUT(B)

May 10, 2021

CSE 444 - Winter 2021

16

30

' OUTPUT can also happen after COMMIT (details coming) -

Action
INPUT(A)

Disk A

Disk B

READ(A)

t:=t*2

WRITE(A1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

c |00 |00 |0 |0 [0 |0 |0

c |00 |00 |0 |0 [0 |0C |0

COMMIT

OUTPUT(A)

16

s 3

OUTPUT(B)

May 10, 2021

CSE 444 - Winter 2021

16

16

31

Atomic Transactions

* FORCE or NO-FORCE

« Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

« Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk?

May 10, 2021 CSE 444 - Winter 2021 Ky

Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

* NO-STEAL.: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

May 10, 2021 CSE 444 - Winter 2021 33

No-Force/Steal (least strict)

* NO-FORCE: Pages of committed transactions
need not be written to disk

» STEAL.: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

May 10, 2021 CSE 444 - Winter 2021 34

Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

* Forces log entries to disk as needed

» After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

May 10, 2021 CSE 444 - Winter 2021 35

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

May 10, 2021 CSE 444 - Winter 2021 36

"UNDO" Log

FORCE and STEAL

May 10, 2021 CSE 444 - Winter 2021

Undo Logging

Log records

» <START T>
* transaction T has begun

» <COMMIT T>
T has committed

» <ABORT T>
* T has aborted

= <T,X,v>
* T has updated element X, and its o/d value was v
 [dempotent, physical log records

May 10, 2021 CSE 444 - Winter 2021

38

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

May 10, 2021

CSE 444 - Winter 2021

39

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 W{
OUTPUT(B) 16 16 16 16 16 g
COMMIT <COMMIT T>

WHAT DO WE DO ?

May 10, 2

CSE 444 - Winter 2021

40

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 Crash !
COMMIT <COMMIT T> ‘

WHAT DO WE DO ?

=y 0. 2 R

We UNDO by setting B=8 and A=8

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

SE 444 - Winter 2021

Crash'!

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Nothing: log contains COMMIT -

May 10, 2 SE 444 43

After Crash

» This is all we see (for example):

CEYSHEETEN | <smrTT>

8 16 <T,A,8>
<T,B,8>

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):

CEYSHEETEN | <smrTT>

8 16 <T,A,8>
<T,B,8>

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

CEYSHEETEN | <smrTT>

8 16 <T,A,8>
<T,B,8>

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

CEYSHEETEN | <smrTT>

8 16 <T,A,8>
<T,B,8>

 \What direction?

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

8 16 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

8 16 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

8 16 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 10, 2021 CSE 444 - Winter 2021 50

After Crash

» This is all we see (for example):
* Need to step through the log

8 8 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 10, 2021 CSE 444 - Winter 2021

After Crash

» This is all we see (for example):
* Need to step through the log

8 8 <TA8>

<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 10, 2021 CSE 444 - Winter 2021 52

After Crash

= |[f we see NO Commit statement:
« We UNDO both changes: A=8, B=8

 The transaction is atomic, since none of its actions have been
executed

= |n we see that T has a Commit statement
 We don’t undo anything

 The transaction is atomic, since both it's actions have been
executed

May 10, 2021 CSE 444 - Winter 2021 53

Recovery with Undo Log

After system’s crash, run recovery manager

= Decide for each transaction T whether it is
completed or not

« <START T>...<COMMIT T>.... =yes
e <START T>...<ABORT T>....... = yes
e <START T>..co .. = Nno

» Undo all modifications by incomplete transactions

May 10, 2021

Recovery with Undo Log

Recovery manager:

» Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk
else ignore
<START T>: ignore

May 10, 2021

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4>
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4.X4 v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>
%!
May 10, 2021 444 - Wiaer 2021

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> |
<T5,X5,v5> Question 3:
<T4.X4 v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>
%!
May 10, 2021 444 - Wiaer 2021

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4 v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

May 10, 2021

444 - \Winter 2021

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:

What happens if second crash during
recovery?

No problem! Log records are
idempotent. Can reapply.

Action t Mem A | Mem B ‘ Disk A | Disk B UNDO Log
' <START T>
INPUT(A) - When must 8
READ(A1) 3 we force pages 3
to disk ?
t=t*2 16 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 @
-
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) | = 16 16 16 16 8
-
OUTPUT(B) | © 16 16 16 16 16
COMMIT <COMMIT T>

May 10, 2021 CSE 444 - Winter 2021 59

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 /< <T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 8 8 8
WRITE(B,1) 16 16 8 8 /(<T,B,8> >
\()UTPUT(@ 16 16 | 16— 16 8
OUTPUT(B) 16 16 16 16
COMMIT | FORGE {<COMMIT T

~—

m RULES: log entry before OUTPUT before COMMIT h

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

» Hence: OUTPUTs are done early, before the

transaction commits

May 10, 2021 CSE 444 - Winter 2021 61

Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

= Wait until all current transactions complete
* Flush log to disk

* Write a <CKPT> log record, flush

» Resume transactions

May 10, 2021 CSE 444 - Winter 2021

62

Undo Recovery with Checkpointing

<T9,X9,v9> .
> other transactions

During recovery, (all completed)
Can stop at first <CKPT> /
<CKPT> <START T2> \
<START T3
4 <START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>

<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

May 10, 2021 CSE 444 - Winter 2021 63

Nonquiescent Checkpointing

* Problem with checkpointing: database freezes
during checkpoint

» Would like to checkpoint while database is
operational

» |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

May 10, 2021 CSE 444 - Winter 2021 64

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active transactions. Flush
log to disk

= Continue normal operation

= \When all of T1,...,Tk have completed, write <END
CKPT>, flush log to disk

May 10, 2021 CSE 444 - Winter 2021 65

Undo with Nonquiescent Checkpointing

If we crash here:
Need to read
Back to start of
T4, T5, T6

If we crash here:
Need to read only to

<START CKPTT4.> ——"..

<START CKPT T4, T5, T6>

<END CKPT>

May 10, 2021

CSE 444 - Winter 2021

>ear|ier transactions plus
T4, T5, T6

>T4, 15, T6, plus
later transactions

» |later transactions

66

Implementing ROLLBACK

= Recall: a transaction can end in COMMIT or
ROLLBACK

*» |dea: use the undo-log to implement ROLLBACK

" How ?
* LSN = Log Sequence Number

 Log entries for the same transaction are linked, using
the LSN's

* Read log in reverse, using LSN pointers

May 10, 2021 CSE 444 - Winter 2021 67

|mp|emon+inm PN 1 RACK

<T9,X9,v9>

= Req

RO | ...
(all completed)
" |de| | <ckPT> CK
<START T2
"HOY | gTaRT T3
* <START T5>
. <START T4> ;ing
<T1,X1,v1>
<T5,X5,v56>
<T2,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

May 10, 2021 CSE 444 - vwvinter 2021

REDO

NO-FORCE and NO-STEAL

May 10, 2021 CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

70

Is this bad ?

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8;SCrash!
OUTPUT(B) 16 16 16 16 16%

May 10, 2021 CSE 444 - Winter 2021 71

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | Mem B | Disk A | Disk B
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8;ECrash!
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

72

Is this bad ?

ij Crash !

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

73

. Is this bad ? _ Yes, it’s bad: lost update I

ij Crash!

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

74

Is this bad ?

[\

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

75

Is this bad ? No: that’s OK.

[\

Action t Mem A | Mem B | Disk A | DiskB
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

May 10, 2021

CSE 444 - Winter 2021

76

