

Announcements

Master's students: Please wrap-up your remaining paper reviews by March 18th

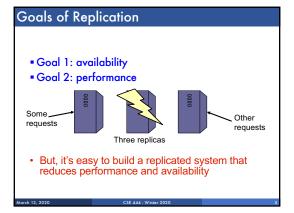
2

References

3

- Ullman Book Chapter 20.6
- Database management systems. Ramakrishnan and Gehrke. Third Ed. Chapter 22.11

Outline


March 13, 2020

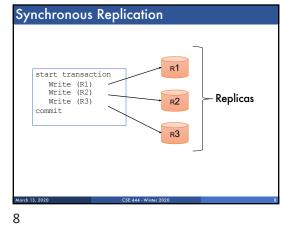
4

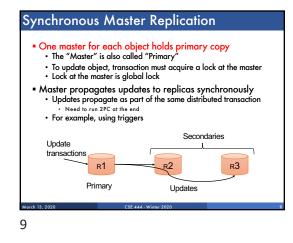
- Goals of replication
- Three types of replication
- Synchronous (aka eager) replication
 Asynchronous (aka lazy) replication

CSF 444 - Winter 202

Two-tier replication

Types of Replication Group Master Synchronous Asynchronous March 13, 2020 CSE 444 - Winter 3


6


Synchronous Replication

- Also called eager replication
- All updates are applied to all replicas (or to a majority) as part of a single transaction (need two phase commit)
- Main goal: as if there was only one copy
 - Maintain consistency
 - Maintain one-copy serializability
 - I.e., execution of transactions has same effect as an execution on a non-replicated db
- Transactions must acquire global locks

March 13, 2020

7

Crash Failures

- What happens when a secondary crashes?
 Nothing happens
 - When secondary recovers, it catches up
- What happens when the master/primary fails?
 Blocking would hurt availability

CSF 444 - Winter 202

• Must chose a new primary: run election

Network Failures

Network failures can cause trouble...

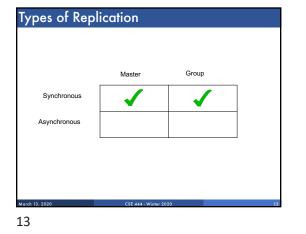
CSE 444 - Winter

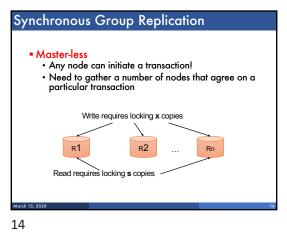
- Secondaries think that primary failed
- Secondaries elect a new primary
- But primary can still be running
- Now have two primaries!

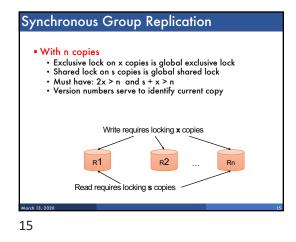
Majority Consensus

- To avoid problem, only majority partition can continue processing at any time
- In general,
 - Whenever a replica fails or recovers...
 - a set of communicating replicas must determine...
- whether they have a majority before they can continue

CSF 444 - Winter 2


March 13, 2020


11


March 13.

12

March 13, 2020

Synchronous Group Replication

Majority locking • s = x = [(n+1)/2]

- eg: 11 nodes: need 6 locked
- No need to run any reconfiguration algorithms

Read-locks-one, write-locks-all

s=1 and x = n, high read performance

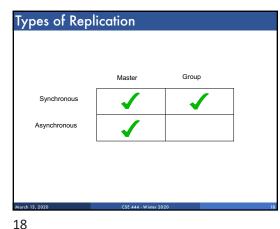
• Need to make sure algo runs on quorum of computers

CSF 444 - Winter 202

Synchronous Replication Properties

- Favours consistency over availability
- Only majority partition can process requests
- There appears to be a single copy of the db

High runtime overhead


- Must lock and update at least majority of replicas
- Two-phase commit

March 13, 20

17

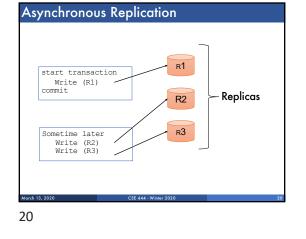
- Runs at pace of slowest replica in quorum
 So overall system is now slower
- Higher deadlock rate (transactions take longer)

CSE 444 - Winter

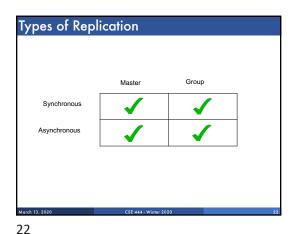
16

March 13, 2020

Asynchronous Replication

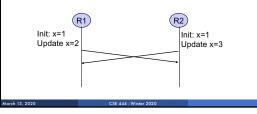


Main goals: availability and performance


Approach

19

- One replica updated by original transaction
- Updates propagate asynchronously to other replicas



Asynchronous Master Replication
 One master holds primary copy Transactions update primary copy Master asynchronously propagates updates to replicas, which process them in same order (e.g. through log shipping) Ensures single-copy serializability What happens when master/primary fails? Can lose most recent transactions when primary fails! After electing a new primary, secondaries must agree who is
most up-to-date
21

Asynchronous Group Replication

- Also called multi-master
- Best scheme for availability
- Cannot guarantee one-copy serializability!

23

Asynchronous Group Replication

- Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - Db state does not reflect any serial execution
 But all replicas have the same state
- Detect conflicts and reconcile replica states

CSE 444 - W

- Different reconciliation techniques are possible
 - Manual
 - Most recent timestamp wins
 - Site A wins over site B
 - User-defined rules, etc.

March 13 24

R1 R2 Init: x=1 at T0 Init: x=1 at T0 Update at T1: x=2 x=2, Old: T0 New: T1 x=2 at T1 x=2 at T1

Detecting Conflicts Using Timestamps Init: x=1 at T₀ Update at T₁: x=2 Conflict! Reconciliation rule T₂ > T₁, so x=3 R1 $x=2, Old: T_0 New: T_1$ $x=3, Old: T_0 New: T_2$ Init: x=1 at T₀ Update at T₂: x=3 Conflict! Reconciliation rule T₂ > T₁, so x=3

Vector Clocks

- An extension of Multiversion Concurrency Control (MVCC) to multiple servers
- Standard MVCC: each data item X has a timestamp t: X₄, X₉, X₁₀, X₁₄, ..., X_t
- Vector Clocks: X has set of [server, timestamp] pairs X([s1,t1], [s2,t2],...)

Asynchronous Group Replication Properties

- Favours availability over consistency
 Can read and update any replica
 - High runtime performance

Weak consistency

Conflicts and reconciliation

Outline

26

- Goals of replication
- Three types of replication
- Synchronous (aka eager) replication
- Asynchronous (aka lazy) replication

CSE 444 - W

Two-tier replication

Two-Tier Replication

- Benefits of lazy master and lazy group
- Each object has a master with primary copy
- When disconnected from master
 - Secondary can only run tentative transactions
- When reconnects to master
 - Master reprocesses all tentative transactions
- Checks an acceptance criterion
- If passes, we now have final commit order

CSE 444 - Winter

• Secondary undoes tentative and redoes committed

March 13, 2020

39

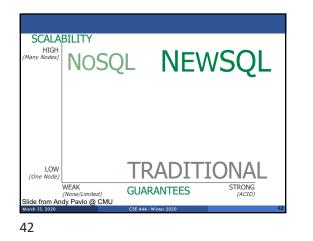
March 13.

40

March 13, 2020

Conclusion

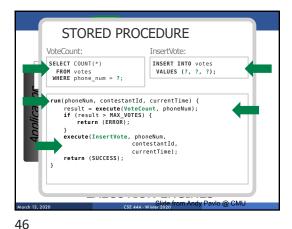
March 13, 2020

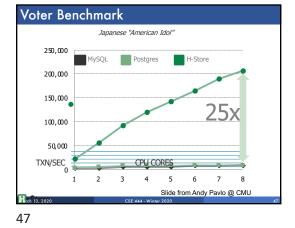

41

Replication is a very important problem

 Fault-tolerance (various forms of replication)
 Caching (lazy master)
 Warehousing (lazy master)
 Mobility (two-tier techniques)


 Replication is complex, but basic techniques and trade-offs are very well known


 Synchronous or asynchronous replication
 Master or quorum


Some Popular NewSQL Systems H-Store Research system from Brown U., MIT, CMU, and Yale Commercialized as VoltDB Hekaton Microsoft Fully integrated into SQL Server Hyper Hybrid OLTP/OLAP Research system from TU Munich. Bought by Tableau Spanner Google

44

Hekaton

- Focus: DBMS with large main memories and many core CPUs
- Integrated with SQL Server
- Key user-visible features
 - Simply declare a table "memory resident"
 - Hekaton tables are fully durable and transactional, though non-durable tables are also supported
 - Query can touch both Hekaton and regular tables

Hekaton Key Details

- Idea: To increase transaction throughput must decrease number of instructions / transaction
- Main-memory DBMS
 - Optimize indexes for memory-resident data
 - Durability by logging and checkpointing records to external storage
- No partitioning
 - Any thread can touch any row of any table
- No locking
 - Uses a new MVCC method for isolation

49

Hekaton More Details Optimized stored procedures Compile statements and stored procedures into customized, highly efficient machine code

CSE 111 W

Hyper

48

- Hybrid OLTP and OLAP
- In-memory data management
- Including optimized indexes for memory-resident data • Data compression for cold data
- Data-centric code generation SQL translated to LLVM
- OLAP separated from OLTP using MVCC
- Exploits hardware transactional memory

CSE AAA - WE

Data shuffling and distribution optimizations

Conclusion

- Many innovations recently in
 Big data analytics
 - Transaction processing at very large scale
- Many more problems remain open
- This course teaches foundations
- Innovate with an open mind!

50

March 13 20

51

March 13