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§MapReduce: Simplified Data Processing on Large 
Clusters. Jeffrey Dean and Sanjay Ghemawat. 
OSDI'04

§Mining of Massive Datasets, by Rajaraman and 
Ullman, http://i.stanford.edu/~ullman/mmds.html

• Map-reduce (Section 20.2); 
• Chapter 2 (Sections 1,2,3 only)
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Outline

§ Review high-level MR ideas from 344

§Discuss implementation in greater detail
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Map Reduce Review

§Google: [Dean 2004]
§Open source implementation: Hadoop

§MapReduce = high-level programming model and 
implementation for large-scale parallel data 
processing
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MapReduce Motivation

§ Not designed to be a DBMS
§ Designed to simplify task of writing parallel programs

• A simple programming model that applies to many large-scale computing 
problems

§ Hides messy details in MapReduce runtime library:
• Automatic parallelization
• Load balancing
• Network and disk transfer optimizations
• Handling of machine failures
• Robustness
• Improvements to core library benefit all users of library!
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content in part from: Jeff Dean
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Data Processing at Massive Scale

§Want to process petabytes of data and more

§Massive parallelism: 
• 100s, or 1000s, or 10000s servers (think data center)
• Many hours

§ Failure:
• If medium-time-between-failure is 1 year
• Then 10000 servers have one failure / hour
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Data Storage: GFS/HDFS

§MapReduce job input is a file

§Common implementation is to store files in  a 
highly scalable file system such as GFS/HDFS

• GFS: Google File System
• HDFS: Hadoop File System

• Each data file is split into M partitions (64MB or more)
• Blocks are replicated & stored on random machines
• Files are append only
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Observation: Your favorite parallel 
algorithm…

Map

(Shuffle)

Reduce
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Typical Problems Solved by MR

§ Read a lot of data
§Map: extract something you care about from 

each record
§ Shuffle and Sort
§ Reduce: aggregate, summarize, filter, transform
§Write the results
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Outline stays the same,
map and reduce change to fit the problem

slide source: Jeff Dean
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Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
§ Input: a bag of (inputkey, value)pairs
§Output: a bag of (outputkey, value)pairs
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Step 1: the MAP Phase

User provides the MAP-function:
§ Input: (input key, value)
§ Ouput:  bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:
§ Input: 
(intermediate key, bag of values)

§ Output (original MR paper): bag of output (values)
§ Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, 
and passes the bag of values to the REDUCE function
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Example

§Counting the number of occurrences of each 
word in a large collection of documents

§ Each Document
• The key = document id (did)
• The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));
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MAP REDUCE
(w1,1)

(w2,1)

(w3,1)

…
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(w2,1)

…
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. . . .
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…

…

…

…
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(w3, 12)

…

…

…

…

Shuffle
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Jobs vs. Tasks

§A MapReduce Job
• One single “query”, e.g. count the words in all docs
• More complex queries may consists of multiple jobs

§A Map Task, or a Reduce Task
• A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker
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Workers

§A worker is a process that executes one task at a 
time

§ Typically there is one worker per processor, 
hence 4 or 8 per node

§Often talk about “slots”
• E.g., Each server has 2 map slots and 2 reduce slots
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MAP Tasks REDUCE Tasks
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. . . .
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…

…
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…

…

…

…
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26CSE 444 - Winter 2020March 4, 2020



Parallel MapReduce Details
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Map

(Shuffle)

Reduce

Data not 
necessarily local

Intermediate data 
goes to local  disk

Output to disk, 
replicated in cluster

File system: GFS 
or HDFS

Task

Task
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MapReduce Implementation
§ There is one master node
§ Input file gets partitioned further into  M’ splits

• Each split is a contiguous piece of the input file
• By default splits correspond to blocks

§Master assigns workers (=servers) to the M’ map 
tasks, keeps track of their progress

§Workers write their output to local disk
§Output of each map task is partitioned into R 

regions
§Master assigns workers to the R reduce tasks
§ Reduce workers read regions from the map 

workers’ local disks 
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Local storage`

MapReduce Phases
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Local storage`

MapReduce Phases
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Q: If we compute an aggregate,
when can we use a combiner?
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Local storage`

MapReduce Phases
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Combine runs same code as reduce
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Interesting Implementation Details

§Worker failure:
• Master pings workers periodically,
• If down then reassigns its task to another worker
• (≠ a parallel DBMS restarts whole query)

§How many map and reduce tasks:
• Larger is better for load balancing
• But more tasks also add overheads
• (≠ parallel DBMS spreads ops across all nodes)
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Interesting Implementation Details

Backup tasks:
§ Straggler = a machine that takes unusually long 

time to complete one of the last tasks. Eg:
• Bad disk forces frequent correctable errors (30MB/s 
à 1MB/s)

• The cluster scheduler has scheduled other tasks on that 
machine

§ Stragglers are a main reason for slowdown
§ Solution: pre-emptive backup execution of the 

last few remaining in-progress tasks

CSE 444 - Winter 2020 33March 4, 2020



Skew
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The State of MapReduce Systems

§ Lots of extensions to address limitations
• Capabilities to write DAGs of MapReduce jobs
• Declarative languages 
• Ability to read from structured storage (e.g., indexes)
• Etc.

§Most companies use both types of engines (MR 
and DBMS), with increased integration

§New systems emerged which improve over 
MapReduce: e.g. Spark
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Declarative Languages on MR

§ PIG Latin (Yahoo!)
• Domain specific language, like Relational Algebra
• Open source

§HiveQL (Facebook)
• SQL-like language
• Open source

§ SQL / Tenzing (Google)
• SQL on MR
• Proprietary
• Morphed into BigQuery
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Relational Queries over MR

§Query à query plan
§ Each operator à one MapReduce job

§ Example: the Pig system
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Background: Pig system
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Pig Latin 
program

A = LOAD 'file1' AS (sid,pid,mass,px:double); 
B = LOAD 'file2' AS (sid,pid,mass,px:double); 
C = FILTER A BY px < 1.0;
D = JOIN C BY sid, 

B BY sid;
STORE g INTO 'output.txt';

Ensemble of 
MapReduce jobs
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Pig Latin 
program
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B = LOAD 'file2' AS (sid,pid,mass,px:double); 
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D = JOIN C BY sid, 
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GroupBy in MapReduce
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SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(key, word)

MAP=GROUP BY, REDUCE=Aggregate

MapReduce IS A GroupBy!
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Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how 
do we compute R(A,B) ⋈ S(B,C) using MR?
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Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then 
how do we compute R(A,B) ⋈ S(B,C) using MR?

§Answer:
• Map: group R by R.B, group S by S.B

• Input = either a tuple R(a,b) or a tuple S(b,c)
• Output = (b,R(a,b)) or (b,S(b,c)) respectively

• Reduce:
• Input = (b,{R(a1,b),R(a2,b),…,S(b,c1),S(b,c2),…})
• Output = {R(a1,b),R(a2,b),…} × {S(b,c1),S(b,c2),…}
• In practice: improve the reduce function (next…)
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Join in MR
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map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:
EmitIntermediate(value.name, (1, value));

else // value.relation=‘Pages’:
EmitIntermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty;  Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);

for v1 in Users, for v2 in Pages
Emit(v1,v2);

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

March 4, 2020



Join in MR

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 - Winter 2020 44March 4, 2020

Users(name, age)
Pages(userName, url)



Join in MR

Pages Users
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

March 4, 2020

Users(name, age)
Pages(userName, url)



Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, userName)

Means: it comes
from relation #1

Means: it comes
from relation #2
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, userName)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Parallel DBMS vs MapReduce

§ Parallel DBMS
• Relational data model and schema
• Declarative query language: SQL
• Many pre-defined operators: relational algebra
• Can easily combine operators into complex queries
• Query optimization, indexing, and physical tuning
• Streams data from one operator to the next without 

blocking
• Can do more than just run queries: Data 

management
• Updates and transactions, constraints, security, 

etc.
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§ Parallel DBMS
• Relational data model and schema
• Declarative query language: SQL
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Interesting historical reading:
MapReduce: A major step backwards by David DeWitt
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Parallel DBMS vs MapReduce

§MapReduce
• Data model is a file with key-value pairs!
• No need to “load data” before processing it
• Easy to write user-defined operators
• Can easily add nodes to the cluster (no need to even 

restart)
• Uses less memory since processes one key-group at a 

time
• Intra-query fault-tolerance thanks to results on disk
• Intermediate results on disk also facilitate scheduling
• Handles adverse conditions: e.g., stragglers
• Arguably more scalable… but also needs 

more nodes!
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