
1March 4, 2020

Database System Internals

CSE 444 - Winter 2020

MapReduce

This lecture

CSE 444 - Winter 2020 9March 4, 2020

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

This lecture

CSE 444 - Winter 2020 10March 4, 2020

Data model? Relational

text/kv-pairs

Scaleup goal? OLAP

Architecture? Shared-Nothing

CSE 444 - Winter 2020 11

References

§MapReduce: Simplified Data Processing on Large
Clusters. Jeffrey Dean and Sanjay Ghemawat.
OSDI'04

§Mining of Massive Datasets, by Rajaraman and
Ullman, http://i.stanford.edu/~ullman/mmds.html

• Map-reduce (Section 20.2);
• Chapter 2 (Sections 1,2,3 only)

March 4, 2020

http://i.stanford.edu/~ullman/mmds.html

Outline

§ Review high-level MR ideas from 344

§Discuss implementation in greater detail

CSE 444 - Winter 2020 12March 4, 2020

Map Reduce Review

§Google: [Dean 2004]
§Open source implementation: Hadoop

§MapReduce = high-level programming model and
implementation for large-scale parallel data
processing

13CSE 444 - Winter 2020March 4, 2020

MapReduce Motivation

§ Not designed to be a DBMS
§ Designed to simplify task of writing parallel programs

• A simple programming model that applies to many large-scale computing
problems

§ Hides messy details in MapReduce runtime library:
• Automatic parallelization
• Load balancing
• Network and disk transfer optimizations
• Handling of machine failures
• Robustness
• Improvements to core library benefit all users of library!

CSE 444 - Winter 2020 14

content in part from: Jeff Dean

March 4, 2020

Data Processing at Massive Scale

§Want to process petabytes of data and more

§Massive parallelism:
• 100s, or 1000s, or 10000s servers (think data center)
• Many hours

§ Failure:
• If medium-time-between-failure is 1 year
• Then 10000 servers have one failure / hour

CSE 444 - Winter 2020 15March 4, 2020

Data Storage: GFS/HDFS

§MapReduce job input is a file

§Common implementation is to store files in a
highly scalable file system such as GFS/HDFS

• GFS: Google File System
• HDFS: Hadoop File System

• Each data file is split into M partitions (64MB or more)
• Blocks are replicated & stored on random machines
• Files are append only

CSE 444 - Winter 2020 16March 4, 2020

17

Observation: Your favorite parallel
algorithm…

Map

(Shuffle)

Reduce

CSE 444 - Winter 2020March 4, 2020

Typical Problems Solved by MR

§ Read a lot of data
§Map: extract something you care about from

each record
§ Shuffle and Sort
§ Reduce: aggregate, summarize, filter, transform
§Write the results

CSE 444 - Winter 2020 18

Outline stays the same,
map and reduce change to fit the problem

slide source: Jeff Dean
March 4, 2020

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
§ Input: a bag of (inputkey, value)pairs
§Output: a bag of (outputkey, value)pairs

19CSE 444 - Winter 2020March 4, 2020

Step 1: the MAP Phase

User provides the MAP-function:
§ Input: (input key, value)
§ Ouput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file

20CSE 444 - Winter 2020March 4, 2020

Step 2: the REDUCE Phase

User provides the REDUCE function:
§ Input:
(intermediate key, bag of values)

§ Output (original MR paper): bag of output (values)
§ Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key,
and passes the bag of values to the REDUCE function

21CSE 444 - Winter 2020March 4, 2020

Example

§Counting the number of occurrences of each
word in a large collection of documents

§ Each Document
• The key = document id (did)
• The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

22CSE 444 - Winter 2020March 4, 2020

MAP REDUCE
(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

23
CSE 444 - Winter 2020

March 4, 2020

Jobs vs. Tasks

§A MapReduce Job
• One single “query”, e.g. count the words in all docs
• More complex queries may consists of multiple jobs

§A Map Task, or a Reduce Task
• A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 444 - Winter 2020 24March 4, 2020

Workers

§A worker is a process that executes one task at a
time

§ Typically there is one worker per processor,
hence 4 or 8 per node

§Often talk about “slots”
• E.g., Each server has 2 map slots and 2 reduce slots

CSE 444 - Winter 2020 25March 4, 2020

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

26CSE 444 - Winter 2020March 4, 2020

Parallel MapReduce Details

CSE 444 - Winter 2020 27

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk

Output to disk,
replicated in cluster

File system: GFS
or HDFS

Task

Task

March 4, 2020

MapReduce Implementation
§ There is one master node
§ Input file gets partitioned further into M’ splits

• Each split is a contiguous piece of the input file
• By default splits correspond to blocks

§Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

§Workers write their output to local disk
§Output of each map task is partitioned into R

regions
§Master assigns workers to the R reduce tasks
§ Reduce workers read regions from the map

workers’ local disks

28CSE 444 - Winter 2020March 4, 2020

Local storage`

MapReduce Phases

29CSE 444 - Winter 2020March 4, 2020

Local storage`

MapReduce Phases

30CSE 444 - Winter 2020

Q: If we compute an aggregate,
when can we use a combiner?

March 4, 2020

Local storage`

MapReduce Phases

31CSE 444 - Winter 2020

Combine runs same code as reduce

March 4, 2020

Interesting Implementation Details

§Worker failure:
• Master pings workers periodically,
• If down then reassigns its task to another worker
• (≠ a parallel DBMS restarts whole query)

§How many map and reduce tasks:
• Larger is better for load balancing
• But more tasks also add overheads
• (≠ parallel DBMS spreads ops across all nodes)

CSE 444 - Winter 2020 32March 4, 2020

Interesting Implementation Details

Backup tasks:
§ Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
• Bad disk forces frequent correctable errors (30MB/s
à 1MB/s)

• The cluster scheduler has scheduled other tasks on that
machine

§ Stragglers are a main reason for slowdown
§ Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSE 444 - Winter 2020 33March 4, 2020

Skew

CSE 444 - Winter 2020 34

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application

March 4, 2020

The State of MapReduce Systems

§ Lots of extensions to address limitations
• Capabilities to write DAGs of MapReduce jobs
• Declarative languages
• Ability to read from structured storage (e.g., indexes)
• Etc.

§Most companies use both types of engines (MR
and DBMS), with increased integration

§New systems emerged which improve over
MapReduce: e.g. Spark

CSE 444 - Winter 2020 35March 4, 2020

Declarative Languages on MR

§ PIG Latin (Yahoo!)
• Domain specific language, like Relational Algebra
• Open source

§HiveQL (Facebook)
• SQL-like language
• Open source

§ SQL / Tenzing (Google)
• SQL on MR
• Proprietary
• Morphed into BigQuery

36CSE 444 - Winter 2020March 4, 2020

Relational Queries over MR

§Query à query plan
§ Each operator à one MapReduce job

§ Example: the Pig system

CSE 444 - Winter 2020 37March 4, 2020

Background: Pig system

38

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,

B BY sid;
STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

CSE 444 - Winter 2020March 4, 2020

Background: Pig system

39

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,

B BY sid;
STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

CSE 444 - Winter 2020March 4, 2020

GroupBy in MapReduce

CSE 444 - Winter 2020 40

SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(key, word)

MAP=GROUP BY, REDUCE=Aggregate

MapReduce IS A GroupBy!

March 4, 2020

Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) ⋈ S(B,C) using MR?

CSE 444 - Winter 2020 41March 4, 2020

Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then
how do we compute R(A,B) ⋈ S(B,C) using MR?

§Answer:
• Map: group R by R.B, group S by S.B

• Input = either a tuple R(a,b) or a tuple S(b,c)
• Output = (b,R(a,b)) or (b,S(b,c)) respectively

• Reduce:
• Input = (b,{R(a1,b),R(a2,b),…,S(b,c1),S(b,c2),…})
• Output = {R(a1,b),R(a2,b),…} × {S(b,c1),S(b,c2),…}
• In practice: improve the reduce function (next…)

CSE 444 - Winter 2020 42March 4, 2020

Join in MR

CSE 444 - Winter 2020 43

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:
EmitIntermediate(value.name, (1, value));

else // value.relation=‘Pages’:
EmitIntermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty; Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);

for v1 in Users, for v2 in Pages
Emit(v1,v2);

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

March 4, 2020

Join in MR

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 - Winter 2020 44March 4, 2020

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

CSE 444 - Winter 2020 45

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

March 4, 2020

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

CSE 444 - Winter 2020 46

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

March 4, 2020

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, userName)

Means: it comes
from relation #1

Means: it comes
from relation #2

CSE 444 - Winter 2020 47

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

March 4, 2020

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, userName)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

CSE 444 - Winter 2020 48

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

March 4, 2020

Users(name, age)
Pages(userName, url)

Parallel DBMS vs MapReduce

§ Parallel DBMS
• Relational data model and schema
• Declarative query language: SQL
• Many pre-defined operators: relational algebra
• Can easily combine operators into complex queries
• Query optimization, indexing, and physical tuning
• Streams data from one operator to the next without

blocking
• Can do more than just run queries: Data

management
• Updates and transactions, constraints, security,

etc.

49CSE 444 - Winter 2020March 4, 2020

Parallel DBMS vs MapReduce

§ Parallel DBMS
• Relational data model and schema
• Declarative query language: SQL
• Many pre-defined operators: relational algebra
• Can easily combine operators into complex queries
• Query optimization, indexing, and physical tuning
• Streams data from one operator to the next without

blocking
• Can do more than just run queries: Data

management
• Updates and transactions, constraints, security,

etc.

50CSE 444 - Winter 2020

Interesting historical reading:
MapReduce: A major step backwards by David DeWitt

March 4, 2020

Parallel DBMS vs MapReduce

§MapReduce
• Data model is a file with key-value pairs!
• No need to “load data” before processing it
• Easy to write user-defined operators
• Can easily add nodes to the cluster (no need to even

restart)
• Uses less memory since processes one key-group at a

time
• Intra-query fault-tolerance thanks to results on disk
• Intermediate results on disk also facilitate scheduling
• Handles adverse conditions: e.g., stragglers
• Arguably more scalable… but also needs

more nodes!

51CSE 444 - Winter 2020March 4, 2020

