=
Shuffle S,4S,, S, on (XX
$essionlD
p—
o
Sewp. A ‘_
: e [senmn A A N —
evon Tl ‘ ¥ :
P—— u AT Ve
o
A
- |
=

C— ! T
[—

4
5

NI
. ‘-lgggm_;
<

B
]
]

| (a) Traditional parallel query plan

—), W A
—— - ;

Trial_has_Timecourse Trial_has_Trajectory

a
5 A\ 5 e .
D ia
FK1 | TeialiD FKL | TeallD ~ - g a3
....... 2 | Trjectory Pon) 557
‘ ‘ el £ & U
oras, KeyiShae’
Timecourse Trajectory = ct
T - o " Y Walton JoffreMargaerian
imecourse jectory o oSSl Myrcelia Grogor
Frequency Frequency ™ Bronn
loryn,
KindOfDat. KindOtData Gendry Ty

gCube shuffle-based parallel

Database System Internals

Transactions: Recovery (part 3

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 26, 2020 CSE 444 - Winter 2020

Announcements

= Lab 3 extended to tonight

February 26, 2020 CSE 444 - Winter 2020

Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 26, 2020 CSE 444 - Winter 2020 3

No-Force/Steal (most strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 26, 2020 CSE 444 - Winter 2020

Write-Ahead Log (WAL)

The Log: append-only file containing log records
= Records every single action of every TXN
= Forces log entries to disk as needed

= After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 26, 2020 CSE 444 - Winter 2020

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 26, 2020 CSE 444 - Winter 2020 6

Action t Mem A I/VN Disk B REDO Log
When must <START T>
READ(A 1 3 g\ we force pages /g
to disk ?
t=t*2 16 8 8
WRITE(At) 16 16 8 8 <T,A,16>
READ(B, 1) 8 16 8 8 8
t=t2 16 16 8 8 8)
g
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
oUTPUT(A) | 16 16 16 16 8
OUTFMT(B)E?/ 16 16 16 16 16

February 26, 2020

CSE 444 - Winter 2020

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t=t*2 16 8 8 8
WRITEALD | 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITEB,) | 16 16 16 8 8 <1.B.16>
COMMIT /_/_//—QCOMMW ﬁ»
@TPUT(A) 16 6 | 16 | 16— 8
@/ra/ 16 16 16 16
RULE: OUTPUT after COMMIT NO-STEAL

February 26, 2020 CSE 444 - Winter 2020 8

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X

» Hence: OUTPUTs are done late

NO-STEAL

February 26, 2020 CSE 444 - Winter 2020

Comparison Undo/Redo

= Undo |ogging: Steal/Force

« OUTPUT must be done early

« If <COMMIT T> is seen, T definitely has written all its data to disk
(hence, don’t need to redo) - inefticient

= Redo logging
« OUTPUT must be done late No-Steal/No-Force

* If <COMMIT T> is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to
undo) - inflexible

» Would like more flexibility on when to OUTPUT:
undo/redo logging (next{

Steal/No-Force

February 26, 2020

Undo/Redo Logging

Log records, only one change

= <T,X,u,v>=T has updated element X, its old
value was u, and its new value is v

February 26, 2020

Undo/Redo-Logging Rule

URT: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative
to <COMMIT T>

February 26, 2020

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8,16>
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

February 26, 2020

CSE 444 - Winter 2020

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
= Redo all committed transaction, top-down
= Undo all uncommitted transactions, bottom-up

February 26, 2020

Recovery with Undo/Redo Log

<START T1> 1
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

February 26, 2020

ARIES

Undo/Redo protocol

February 26, 2020 CSE 444 - Winter 2020 17

= ARIES pieces together several techniques into a
comprehensive algorithm

= Developed at IBM Almaden, by Mohan
= IBM botched the patent, so everyone uses it now

= Several variations, e.g. for distributed
tfransactions

February 26, 2020 CSE 444 - Winter 2020 18

ARIES Recovery Manager

Log entries:
= <START T> - when T begins

= Update: <T,X,u,v>
* T updates X, old value=u, new value=v
* Logical description of the change

s <COMMIT T> or <ABORT T> then <END>
» <CLR> - we'll talk about them later.

February 26, 2020 CSE 444 - Winter 2020

ARIES Recovery Manager

Rule:

= |[f T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

February 26, 2020 CSE 444 - Winter 2020

LSN = Log Sequence Number

SN = identifier of a log entry

* Log entries belonging to the same TXN are linked with
extra entry for previous LSN

»Each page contains a pageLSN:
* LSN of log record for latest update to that page

February 26, 2020 CSE 444 - Winter 2020

ARIES Data Structures

= Active Transactions Table
e Lists all active TXN’s
* For each TXN: lastLSN = its most recent update LSN

* Dirty Page Table
e Lists all dirty pages

* For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

= Write Ahead Log
* LSN, prevLSN = previous LSN for same txn

February 26, 2020 CSE 444 - Winter 2020 24

Data Structures

Dirty pages Log (WAL)
pagelD recLSN LSN | prevLSN |transIiD | pagelD |Log entry
P5 102 101 |- T100 P7
P6 103 102 |- T200 P5
P7 101 103 | 102 T200 P6
104 | 101 T100 P5
Active transactions Buffer Pool
transID lastLSN P2
T100 104
T200 103 P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

February 26, 2020

ARIES Normal Operation

T writes page P
= What do we do ?

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

T writes page P
= What do we do ?

* Write <T,P,u,v> in the Log
 pageLSN=LSN
 prevLSN=lastLSN

* |lastLSN=LSN
 recLSN-=if isNull then LSN

February 26, 2020 CSE 444 - Winter 2020

27

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* What do we do ?

Buffer manager wants INPUT(P)
* \What do we do ?

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* \What do we do ?

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

» Create entry in Dirty Pages table
recLSN = NULL

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

Transaction T starts
= \What do we do ?

Transaction T commits/aborts
= \What do we do ?

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits
= \What do we do ?

February 26, 2020 CSE 444 - Winter 2020

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits

= Write <COMMIT T> in the log
* Flush log up to this entry

* Write <END>

February 26, 2020 CSE 444 - Winter 2020

Checkpoints

Write into the log

= Entire active transactions table
= Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

February 26, 2020 CSE 444 - Winter 2020

ARIES Recovery

1. Analysis pass
« Figure out what was going on at time of crash
« List of dirty pages and active transactions

2. Redo pass (repeating history principle)
 Redo all operations, even for transactions that will not commit
« Get back to state at the moment of the crash

3. Undo pass
« Remove effects of all uncommitted transactions
* Log changes during undo in case of another crash during undo

February 26, 2020 CSE 444 - Winter 2020 36

ARIES Method lllustration

Start of oldest First update] . .
in—progress l)otentia“y (,hecprlnt End Ot Log
transaction lost during crash
....I I .. l- Log (time —®
t Analysis
; > Redo
- Undo
‘gur 3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
in reverse order

[Figure 3 from Franklin97]

February 26, 2020 CSE 444 - Winter 2020 37

1. Analysis Phase

» Goal
» Determine point in log where to start REDO

» Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

« |dentify active transactions when crashed

= Approach

* Rebuild active transactions table and dirty pages table
* Reprocess the log from the checkpoint

» Only update the two data structures
» Compute: firstLSN = smallest of all recoveryLSN

February 26, 2020 CSE 444 - Winter 2020 38

1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN= 777

Where do we start
the REDO phase ?

Dirty

pages pagelD | recLSN
Active transID | lastLSN
txn

February 26, 2020 CSE 444 - Winter 2020 39

1. Analysis Phase

L 09 Checkpoint (crash)

T

firstLSN=min(recLSN)

Dirty

pages pagelD | recLSN
Active transID | lastLSN
txn

February 26, 2020 CSE 444 - Winter 2020 40

1. Analysis Phase

Dirty
pages

L o) g Checkpoint
firstLSN
pagelD | recLSN history réa:g:éli): | Eéé;s:@:
A
transiD | lastLSN

Active
txn

February 26, 2020

(crash)

I lastLSN |

| transID ! lastLSN ,

I

CSE 444 - Winter 2020

2. Redo Phase

Main principle: replay history

= Process Log forward, starting from firstLSN
= Read every log record, sequentially

= Redo actions are not recorded in the log

= Needs the Dirty Page Table

February 26, 2020 CSE 444 - Winter 2020

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
» Redo the action P=u and WRITE(P)
» Only redo actions that need to be redone

February 26, 2020 CSE 444 - Winter 2020

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* If P is not in Dirty Page then no update
* |[f recLSN > LSN, then no update

» Read page from disk:
If pageLSN >= LSN, then no update

= Otherwise perform update

February 26, 2020 CSE 444 - Winter 2020

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

February 26, 2020 CSE 444 - Winter 2020

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again! The pagelLSN will ensure that
we do not reapply a change twice

February 26, 2020 CSE 444 - Winter 2020

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

February 26, 2020 CSE 444 - Winter 2020

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ¢

* We can only undo only the loser transactions

 Need to support ROLLBACK: selective undo, for one
transaction

February 26, 2020 CSE 444 - Winter 2020 48

3. Undo Phase

Main principle: “logical” undo
= Start from end of Log, move backwards
= Read only affected log entries

= Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

= CLRs are redone, but never undone

February 26, 2020 CSE 444 - Winter 2020

3. Undo Phase: Detalls

= “|_oser transactions” = uncommitted
transactions in Active Transactions Table

= ToUndo = set of lastLSN of loser transactions

February 26, 2020 CSE 444 - Winter 2020

3. Undo Phase: Detalls

While ToUndo not empty:

= Choose most recent (largest) LSN in ToUndo

= If LSN = regular record <T,P,u,v>:

* Write a CLR where CLR.undoNextLSN = LSN.prevLSN
* Undo v

» [f LSN = CLR record:

« Don’t undo !

= if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

February 26, 2020 CSE 444 - Winter 2020

51

Write Write Write %% ag:': % CLR FOR CLR FOR #ZZ777% CLR FOR
page 1 page 1 page 1 ™“g” LSN 30 LSN 20 “ggeg# LSN 10
C \
lJ()g (time —®) ----| ---------------- | -------------- 1 ------------------------------ 4% ------------ (”f/’_ ------------------------- (,/(/
yN: Restart s
LSN: g 20 30 - 40 50 Restart T 4

L f

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

February 26, 2020 CSE 444 - Winter 2020 52

3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

February 26, 2020 CSE 444 - Winter 2020

3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo

February 26, 2020 CSE 444 - Winter 2020

