
1February 24, 2020

Database System Internals

CSE 444 - Winter 2020

Transactions: Recovery (part 2)

Announcements

§ Lab 3 due Tuesday evening

§ Lab 4 out tonight, start reading the spec!

CSE 444 - Winter 2020 2February 24, 2020

Force/No-steal (most strict)

§ FORCE: Pages of committed transactions must be
forced to disk before commit

§NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

CSE 444 - Winter 2020 3

Easy to implement (how?) and ensures atomicity

February 24, 2020

No-Force/Steal (most strict)

§NO-FORCE: Pages of committed transactions
need not be written to disk

§STEAL: Pages of uncommitted transactions may
be written to disk

CSE 444 - Winter 2020 4

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 24, 2020

5

Write-Ahead Log (WAL)

The Log: append-only file containing log records
§ Records every single action of every TXN
§ Forces log entries to disk as needed
§After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Winter 2020February 24, 2020

Policies and Logs

CSE 444 - Winter 2020 6

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 24, 2020

“UNDO” Log

CSE 444 - Winter 2020 7

FORCE and STEAL

February 24, 2020

8

Undo Logging

Log records
§<START T>

• transaction T has begun
§<COMMIT T>

• T has committed
§<ABORT T>

• T has aborted
§<T,X,v>

• T has updated element X, and its old value was v
• Idempotent, physical log records

CSE 444 - Winter 2020February 24, 2020

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

9
WHAT DO WE DO ?

February 24, 2020 CSE 444 - Winter 2020

10

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

CSE 444 - Winter 2020
WHAT DO WE DO ? We UNDO by setting B=8 and A=8

February 24, 2020

CSE 444 - Winter 2020 11

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

• This is all we see (for example):

February 24, 2020

CSE 444 - Winter 2020 12

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

• This is all we see (for example):

February 24, 2020

CSE 444 - Winter 2020 13

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

• This is all we see (for example):
• Need to step through the log

February 24, 2020

CSE 444 - Winter 2020 14

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

• This is all we see (for example):
• Need to step through the log

• What direction?

February 24, 2020

15

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

• This is all we see (for example):
• Need to step through the log

• What direction?
• In UNDO log, we start at the most

recent and go backwards in time
February 24, 2020 CSE 444 - Winter 2020

• This is all we see (for example):
• Need to step through the log

• What direction?
• In UNDO log, we start at the most

recent and go backwards in time
16

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

February 24, 2020 CSE 444 - Winter 2020

• This is all we see (for example):
• Need to step through the log

• What direction?
• In UNDO log, we start at the most

recent and go backwards in time
17

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 16

After Crash

February 24, 2020 CSE 444 - Winter 2020

• This is all we see (for example):
• Need to step through the log

• What direction?
• In UNDO log, we start at the most

recent and go backwards in time
18

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 8

After Crash

February 24, 2020 CSE 444 - Winter 2020

• This is all we see (for example):
• Need to step through the log

• What direction?
• In UNDO log, we start at the most

recent and go backwards in time
19

<START T>
<T,A,8>
<T,B,8>

Disk A Disk B
8 8

After Crash

February 24, 2020 CSE 444 - Winter 2020

After Crash

§ If we see NO Commit statement:
• We UNDO both changes: A=8, B=8
• The transaction is atomic, since none of its actions have been

executed

§ In we see that T has a Commit statement
• We don’t undo anything
• The transaction is atomic, since both it’s actions have been

executed

CSE 444 - Winter 2020 20February 24, 2020

Recovery with Undo Log

After system’s crash, run recovery manager

§Decide for each transaction T whether it is
completed or not

• <START T>….<COMMIT T>…. = yes
• <START T>….<ABORT T>……. = yes (already cleaned up)

• <START T>……………………… = no

§Undo all modifications by incomplete transactions

CSE 444 - Winter 2020 21February 24, 2020

Recovery with Undo Log

Recovery manager:
§ Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
else ignore

<START T>: ignore

CSE 444 - Winter 2020 22February 24, 2020

23

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second crash during
recovery?

Crash !
February 24, 2020 CSE 444 - Winter 2020

24

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?
To the beginning.

Question 3:
What happens if second crash during
recovery?

Crash !
February 24, 2020 CSE 444 - Winter 2020

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?
To the beginning.

Question 3:
What happens if second crash during
recovery?
No problem! Log records are
idempotent. Can reapply.

Crash !
25February 24, 2020 CSE 444 - Winter 2020

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

26CSE 444 - Winter 2020February 24, 2020

27

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>FORCE

CSE 444 - Winter 2020
RULES: log entry before OUTPUT before COMMIT

February 24, 2020

28

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

§Hence: OUTPUTs are done early, before the
transaction commits

CSE 444 - Winter 2020

FORCE

February 24, 2020

Checkpointing

Checkpoint the database periodically
§Stop accepting new transactions
§Wait until all current transactions complete
§ Flush log to disk
§Write a <CKPT> log record, flush
§Resume transactions

CSE 444 - Winter 2020 29February 24, 2020

Undo Recovery with Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions

30February 24, 2020 CSE 444 - Winter 2020

Nonquiescent Checkpointing

§ Problem with checkpointing: database freezes
during checkpoint

§Would like to checkpoint while database is
operational

§ Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Winter 2020 31February 24, 2020

Nonquiescent Checkpointing

§Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions. Flush
log to disk

§Continue normal operation

§When all of T1,…,Tk have completed, write
<END CKPT>, flush log to disk

32CSE 444 - Winter 2020February 24, 2020

Undo with Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions

33

If we crash here:
Need to read
Back to start of
T4, T5, T6

If we crash here:
Need to read only to
<START CKPT T4..>

February 24, 2020 CSE 444 - Winter 2020

Implementing ROLLBACK

§ Recall: a transaction can end in COMMIT or
ROLLBACK

§ Idea: use the undo-log to implement ROLLBACK
§How ?

• LSN = Log Sequence Number
• Log entries for the same transaction are linked, using

the LSN’s
• Read log in reverse, using LSN pointers

CSE 444 - Winter 2020 36February 24, 2020

Implementing ROLLBACK

§ Recall: a transaction can end in COMMIT or
ROLLBACK

§ Idea: use the undo-log to implement ROLLBACK
§How ?

• LSN = Log Sequence Number
• Log entries for the same transaction are linked, using

the LSN’s
• Read log in reverse, using LSN pointers

CSE 444 - Winter 2020 37

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T2,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 24, 2020

REDO Log

CSE 444 - Winter 2020 38

NO-FORCE and NO-STEAL

February 24, 2020

39

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2020February 24, 2020

40

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2020February 24, 2020

41

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? Yes, it’s bad: A=16, B=8

Crash !

CSE 444 - Winter 2020February 24, 2020

42

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2020February 24, 2020

43

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

Yes, it’s bad: lost update

CSE 444 - Winter 2020February 24, 2020

44

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Winter 2020February 24, 2020

45

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? No: that’s OK.

Crash !

CSE 444 - Winter 2020February 24, 2020

46

Redo Logging

One minor change to the undo log:

§<T,X,v>= T has updated element X, and its new
value is v

CSE 444 - Winter 2020February 24, 2020

47

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2020February 24, 2020

48

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

CSE 444 - Winter 2020February 24, 2020

49

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

CSE 444 - Winter 2020

We REDO by setting A=16 and B=16
February 24, 2020

Recovery with Redo Log

After system’s crash, run recovery manager
§ Step 1. Decide for each transaction T whether it is

committed or not
• <START T>….<COMMIT T>…. = yes
• <START T>….<ABORT T>……. = no
• <START T>……………………… = no

§ Step 2. Read log from the beginning, redo all
updates of committed transactions

CSE 444 - Winter 2020 50February 24, 2020

51

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Winter 2020

Show actions
during recovery

Crash !

February 24, 2020

Nonquiescent Checkpointing

§Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active txn’s

§ Begin flush to disk all blocks of committed
transactions (dirty blocks)

§Meantime, continue normal operation
§When all blocks have been written, write

<END CKPT>

52

END CKPT has different meaning here than in Undo log!
It does not mean that T1,…,Tk are complete

CSE 444 - Winter 2020February 24, 2020

Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT> and it’s
<START CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use

53February 24, 2020 CSE 444 - Winter 2020

54

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

CSE 444 - Winter 2020February 24, 2020

55

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

NO-STEAL

CSE 444 - Winter 2020

RULE: OUTPUT after COMMIT
February 24, 2020

56

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

§Hence: OUTPUTs are done late

CSE 444 - Winter 2020

NO-STEAL

February 24, 2020

Comparison Undo/Redo

§ Undo logging:
• OUTPUT must be done early
• If <COMMIT T> is seen, T definitely has written all its data to disk

(hence, don’t need to redo) – inefficient

§ Redo logging
• OUTPUT must be done late
• If <COMMIT T> is not seen, T definitely has not written any of its

data to disk (hence there is not dirty data on disk, no need to
undo) – inflexible

§ Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

CSE 444 - Winter 2020 58

Steal/Force

No-Steal/No-Force

Steal/No-Force

February 24, 2020

Undo/Redo Logging

Log records, only one change
§<T,X,u,v>= T has updated element X, its old

value was u, and its new value is v

CSE 444 - Winter 2020 59February 24, 2020

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative
to <COMMIT T>

CSE 444 - Winter 2020 60February 24, 2020

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT
61February 24, 2020 CSE 444 - Winter 2020

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
§ Redo all committed transaction, top-down
§Undo all uncommitted transactions, bottom-up

CSE 444 - Winter 2020 62February 24, 2020

Recovery with Undo/Redo Log

CSE 444 - Winter 2020 63

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

February 24, 2020

ARIES

CSE 444 - Winter 2020 64February 24, 2020

65

Aries

§ARIES pieces together several techniques into a
comprehensive algorithm

§Developed at IBM Almaden, by Mohan
§ IBM botched the patent, so everyone uses it now
§ Several variations, e.g. for distributed

transactions

CSE 444 - Winter 2020February 24, 2020

Log Granularity

Two basic types of log records for update operations
§ Physical log records

• Position on a particular page where update occurred
• Both before and after image for undo/redo logs
• Benefits: Idempotent & updates are fast to redo/undo

§ Logical log records
• Record only high-level information about the operation
• Benefit: Smaller log
• BUT difficult to implement because crashes can occur in

the middle of an operation

CSE 444 - Winter 2020 66February 24, 2020

68

ARIES Recovery Manager

Log entries:
§<START T> -- when T begins
§Update: <T,X,u,v>

• T updates X, old value=u, new value=v
• Logical description of the change

§<COMMIT T> or <ABORT T> then <END>
§<CLR> – we’ll talk about them later.

CSE 444 - Winter 2020February 24, 2020

69

ARIES Recovery Manager

Rule:
§ If T modifies X, then <T,X,u,v> must be written

to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

CSE 444 - Winter 2020February 24, 2020

70

LSN = Log Sequence Number

§LSN = identifier of a log entry
• Log entries belonging to the same TXN are linked with

extra entry for previous LSN

§Each page contains a pageLSN:
• LSN of log record for latest update to that page

CSE 444 - Winter 2020February 24, 2020

71

ARIES Data Structures

§Active Transactions Table
• Lists all active TXN’s
• For each TXN: lastLSN = its most recent update LSN

§Dirty Page Table
• Lists all dirty pages
• For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty
§Write Ahead Log

• LSN, prevLSN = previous LSN for same txn

CSE 444 - Winter 2020February 24, 2020

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions

P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

72February 24, 2020 CSE 444 - Winter 2020

73

ARIES Normal Operation

T writes page P
§What do we do ?

CSE 444 - Winter 2020February 24, 2020

74

ARIES Normal Operation

T writes page P
§What do we do ?

• Write <T,P,u,v> in the Log
• pageLSN=LSN
• prevLSN=lastLSN
• lastLSN=LSN
• recLSN=if isNull then LSN

CSE 444 - Winter 2020February 24, 2020

75

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§What do we do ?

Buffer manager wants INPUT(P)
§What do we do ?

CSE 444 - Winter 2020February 24, 2020

76

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§ Flush log up to pageLSN
§Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
§What do we do ?

CSE 444 - Winter 2020February 24, 2020

77

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
§ Flush log up to pageLSN
§Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
§Create entry in Dirty Pages table

recLSN = NULL

CSE 444 - Winter 2020February 24, 2020

78

ARIES Normal Operation

Transaction T starts
§What do we do ?

Transaction T commits/aborts
§What do we do ?

CSE 444 - Winter 2020February 24, 2020

79

ARIES Normal Operation

Transaction T starts
§Write <START T> in the log
§New entry T in Active TXN;

lastLSN = null
Transaction T commits
§What do we do ?

CSE 444 - Winter 2020February 24, 2020

80

ARIES Normal Operation

Transaction T starts
§Write <START T> in the log
§New entry T in Active TXN;

lastLSN = null
Transaction T commits
§Write <COMMIT T> in the log
§ Flush log up to this entry
§Write <END>

CSE 444 - Winter 2020February 24, 2020

81

Checkpoints

Write into the log

§Entire active transactions table
§Entire dirty pages table

CSE 444 - Winter 2020

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

February 24, 2020

83

ARIES Recovery

1. Analysis pass
• Figure out what was going on at time of crash
• List of dirty pages and active transactions

2. Redo pass (repeating history principle)
• Redo all operations, even for transactions that will not commit
• Get back to state at the moment of the crash

3. Undo pass
• Remove effects of all uncommitted transactions
• Log changes during undo in case of another crash during undo

CSE 444 - Winter 2020February 24, 2020

85

1. Analysis Phase

§ Goal
• Determine point in log where to start REDO
• Determine set of dirty pages when crashed

• Conservative estimate of dirty pages
• Identify active transactions when crashed

§ Approach
• Rebuild active transactions table and dirty pages table
• Reprocess the log from the checkpoint

• Only update the two data structures
• Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Winter 2020February 24, 2020

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

firstLSN= ??? Where do we start
the REDO phase ?

86CSE 444 - Winter 2020February 24, 2020

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

firstLSN=min(recLSN)

87CSE 444 - Winter 2020February 24, 2020

1. Analysis Phase

(crash)Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN

transID lastLSN

pageID recLSN

transID lastLSN

Replay
history

firstLSN

88CSE 444 - Winter 2020February 24, 2020

2. Redo Phase

Main principle: replay history
§ Process Log forward, starting from firstLSN
§ Read every log record, sequentially
§ Redo actions are not recorded in the log
§Needs the Dirty Page Table

CSE 444 - Winter 2020 89February 24, 2020

90

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
§Redo the action P=u and WRITE(P)
§Only redo actions that need to be redone

CSE 444 - Winter 2020February 24, 2020

91

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
§ If P is not in Dirty Page then no update
§ If recLSN > LSN, then no update
§Read page from disk:

If pageLSN >= LSN, then no update
§Otherwise perform update

CSE 444 - Winter 2020February 24, 2020

92

2. Redo Phase: Details

What happens if system crashes during REDO ?

CSE 444 - Winter 2020February 24, 2020

93

2. Redo Phase: Details

What happens if system crashes during REDO ?

We REDO again ! The pageLSN will ensure that
we do not reapply a change twice

CSE 444 - Winter 2020February 24, 2020

3. Undo Phase

§Cannot “unplay” history, in the same way as we
“replay” history

§WHY NOT ?

CSE 444 - Winter 2020 94February 24, 2020

3. Undo Phase

§Cannot “unplay” history, in the same way as we
“replay” history

§WHY NOT ?
• Undo only the loser transactions
• Need to support ROLLBACK: selective undo, for one

transaction
§Hence, logical undo v.s. physical redo

CSE 444 - Winter 2020 95February 24, 2020

3. Undo Phase

Main principle: “logical” undo
§ Start from end of Log, move backwards
§ Read only affected log entries
§Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
§CLRs are redone, but never undone

CSE 444 - Winter 2020 96February 24, 2020

3. Undo Phase: Details

§ “Loser transactions” = uncommitted
transactions in Active Transactions Table

§ ToUndo = set of lastLSN of loser transactions

CSE 444 - Winter 2020 97February 24, 2020

3. Undo Phase: Details

While ToUndo not empty:
§ Choose most recent (largest) LSN in ToUndo
§ If LSN = regular record <T,P,u,v>:

• Write a CLR where CLR.undoNextLSN = LSN.prevLSN
• Undo v

§ If LSN = CLR record:
• Don’t undo !

§ if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Winter 2020 98February 24, 2020

100

3. Undo Phase: Details

What happens if system crashes during UNDO ?

CSE 444 - Winter 2020February 24, 2020

101

3. Undo Phase: Details

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a
REDO record: we simply redo the undo

CSE 444 - Winter 2020February 24, 2020

