=
Shuffle S,4S,, S, on (XX
$essionlD
p—
o
Sewp. A ‘_
: e [senmn A A N —
evon Tl ‘ ¥ :
P—— u AT Ve
o
A
- |
=

C— ! T
[—

4
5

NI
. ‘-lgggm_;
<

B
]
]

| (a) Traditional parallel query plan

—), W A
—— - ;

Trial_has_Timecourse Trial_has_Trajectory

a
5 A\ 5 e .
D ia
FK1 | TeialiD FKL | TeallD ~ - g a3
....... 2 | Trjectory Pon) 557
‘ ‘ el £ & U
oras, KeyiShae’
Timecourse Trajectory = ct
T - o " Y Walton JoffreMargaerian
imecourse jectory o oSSl Myrcelia Grogor
Frequency Frequency ™ Bronn
loryn,
KindOfDat. KindOtData Gendry Ty

gCube shuffle-based parallel

Database System Internals

Transactions: Recovery (part 1

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 21, 2020 CSE 444 - Winter 2020

Announcements

» HW 3 due tonight, HW 4 out after class

= Lab 3+4 quiz will be after lab 4
* Likely 3/6 or 3/9

= Lab 3 due Tuesday evening

» Lab 4 out soon, before Tuesday so you can
read about the spec.

February 21, 2020 CSE 444 - Winter 2020

Main textbook (Garcia-Molina)
=Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)

= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and

Engineering, A. Tucker, ed., CRC Press, Boca
Raton, 1997.

February 21, 2020 CSE 444 - Winter 2020

Transaction Management

Two parts:

= Concurrency control: ACID
= Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

February 21, 2020

System Crash

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

UPDATE Account2

SET balance = balance + 500
COMMIT

February 21, 2020 CSE 444 - Winter 2020 5

Type of Crash

Prevention

Wrong data entry

Constraints and
Data cleaning

Disk crashes

Redundancy:
e.g. RAID, archive

Data center failures

Remote backups or

replicas
System failures: DATABASE
e.g. power RECOVERY

February 21, 2020

CSE 444 - Winter 2020

System Failures

» Each transaction has internal state

= When system crashes, internal state is lost
* Don’t know which parts executed and which didn’t
* Need ability to undo and redo

February 21, 2020

Butfer Manager Review

READ
WRITE Page requests from higher-level code
| Files and access methods
Buffer pool [Buffer pool manager
Disk page
Pa9 Main
Free frame— memory
INPUT | choice of frame dictated
OUTPUT by replacement policy

Disk = collection i 1 |
of blocks page corresponds

1 disk block
Data must be in RAM for DBMS to operate on it! to 1 disk bloc
Buffer pool = table of <frame#, pageid> pairs

February 21, 2020 CSE 444 - Winter 2020

Butfer Manager Review

= Enables higher layers of the DBMS to assume that
needed data is in main memory

= Caches data in memory. Problems when crash
occurs:

1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk

February 21, 2020

Transactions

= Assumption: the database is composed of
elements.

= 1 element can be either:
* 1 page = physical logging
* 1 record = logical logging

= In Lab 4 we use page-level elements

February 21, 2020 CSE 444 - Winter 2020 10

Primitive Operations of Transactions

« READ(X, 1)

* copy element X to transaction local variable t

« WRITE(X,)

* copy transaction local variable t to element X

« INPUT(X)

* read element X to memory buffer

« OUTPUT(X)

« write element X to disk

February 21, 2020 CSE 444 - Winter 2020 11

Running Example

READ(A,t);
b:=1*2;
WRITE(A,1);
READ(B,t);
b:=1*2;
WRITE(B,t)
COMMIT;

BEGIN TRANSACTION

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

February 21, 2020

CSE 444 - Winter 2020

Running Example

BEGIN TRANSACTION

WR
CO

Will look at various crash scenarios

What behavior do we want in each case?

READ(A 1);

b:=1%2; Initially, A=B=8.

WRITE(A t); Atomicity requires that either
READIS,) e

February 21, 2020

CSE 444 - Winter 2020

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

14

Transaction

Buffer pool

INPUT(A)

Mem A Mem B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

15

Transaction

Buffer pool

INPUT(A)

Mem A Mem B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

16

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

co (0O | 0O

| G| 0|0

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

| V4

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

c (0O (OO | OO | OO

| G| 0|0 | O

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

18

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

c (OO (0O |00 | OO | OO

| 0|00 | 0| 0O

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

19

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

C (0O (0O |00 | 0| CO| O

| 0|00 | 0| 0|0

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

20

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

2]

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

OUTPUT(A)

-
(o))

| O[O0 |CO|0C|[OC|C| 0|0

OUTPUT(B)

COMMIT

February 21, 2020

CSE 444 - Winter 2020

22

Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

OUTPUT(A)

RN
(@))

| O[O0 |CO|0C|[OC|C| 0|0

OUTPUT(B)

RN
(@))

-
o

COMMIT

February 21, 2020

CSE 444 - Winter 2020

23

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

OUTPUT(A)

RN
(@))

OUTPUT(B)

RN
(@))

—
CD@OO
Q§
o
ol
4

COMMIT

February 21, 2020

CSE 444 - Winter 2020

24

Is this bad ?

Yes it's bad: A=16, B=8....

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

OUTPUT(A)

RN
(@))

OUTPUT(B)

RN
(@))

—
CD@OO
Q§
o
ol
4

COMMIT

February 21, 2020

CSE 444 - Winter 2020

25

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

OUTPUT(A)

RN
(@))

| O[O0 |CO|0C|[OC|C| 0|0

OUTPUT(B)

RN
(@))

-

COMMIT

February 21, 2020

CSE 444 - Winter 2020

26

Is this bad ? Yes it’s bad: A=B=16, but not committed

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

February 21, 2020 CSE 444 - Winter 2020 27

O |00 (0O [0 |00 | 0| CO| O

| O[O0 |CO|0C|[OC|C| 0|0

RN
(@))

RN
(@))
RN
O

Crash!

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

OUTPUT(A)

RN
(@))

i

OUTPUT(B)

RN
(@))

N
o

COMMIT

February 21, 2020

CSE 444 - Winter 2020

28

Is this bad ?

No: that's OK

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

OUTPUT(A)

RN
(@))

(@]
J@é
YN

OUTPUT(B)

RN
(@))

N
o

COMMIT

February 21, 2020

CSE 444 - Winter 2020

29

' OUTPUT can also happen after COMMIT (details coming) -

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (0O [0 |00 | 0| CO| O

| OO [0 |CO |0 |0 |OC| O

COMMIT

OUTPUT(A)

16

OUTPUT(B)

February 21, 2020

CSE 444 - Winter 2020

16

16

30

' OUTPUT can also happen after COMMIT (details coming) -

Action Disk A Disk B
INPUT(A) 8 8
READ(A 1) 8 8

t=t2 8 8
WRITE(At) 8 8
INPUT(B) 8 8
READ(B.t) 8 8
t=t2 8 8
WRITE(B,) 8 8
COMMIT
OUTPUT(A) 16 8 gcwhP
OUTPUT(B) 16 16

February 21, 2020 CSE 444 - Winter 2020 31

Atomic Transactions

= FORCE or NO-FORCE

« Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

 Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk?

February 21, 2020 CSE 444 - Winter 2020 Ky

Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 21, 2020 CSE 444 - Winter 2020 33

No-Force/Steal (most strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 21, 2020 CSE 444 - Winter 2020

Write-Ahead Log (WAL)

The Log: append-only file containing log records
= Records every single action of every TXN
= Forces log entries to disk as needed

= After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 21, 2020 CSE 444 - Winter 2020

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 21, 2020 CSE 444 - Winter 2020 36

“UNDQO” Log

FORCE and STEAL

February 21, 2020 CSE 444 - Winter 2020 37

Undo Logging

Log records
= <START T>

* transaction T has begun

« <COMMIT T>

* T has committed

« <ABORT T>
* T has aborted

= <T X,v>
* T has updated element X, and its old value was v
* Idempotent, physical log records

February 21, 2020 CSE 444 - Winter 2020 38

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2020

CSE 444 - Winter 2020

39

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 B oaml
COMMIT <COMMIT T>

WHAT DO WE DO ?
February

CSE 444 - Winter 2020

40

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 Crash |
COMMIT <COMMIT T> ‘

WHAT DO WE DO ?
February

CS

We UNDO by setting B=8 and A=8

41

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?
February

SE 444 - Winter 2020

Crash!

42

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Nothing: log contains COMMIT

After Crash

* This is all we see (for example):

CEYWCETN | <smrTT

8 16 <T,A,8>
<T,B,8>

February 21, 2020 CSE 444 - Winter 2020 44

After Crash

* This is all we see (for example):

CEYWCETN | <smrTT

8 16 <T,A,8>
<T,B,8>

February 21, 2020 CSE 444 - Winter 2020 45

After Crash

* This is all we see (for example):
* Need to step through the log

CEYWCETN | <smrTT

8 16 <T,A,8>
<T,B,8>

February 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

CEYWCETN | <smrTT

8 16 <T,A,8>
<T,B,8>

 \What direction?

February 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

CEYWCETN | <smrTT]

8 16 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

ruary 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

CEYWCETN | <smrTT]

8 16 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

ruary 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

Disk A Disk BRSNS RE]

8 16 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

ruary 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

Disk A Disk BRSNS RE]

8 8 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

ruary 21, 2020 CSE 444 - Winter 2020

After Crash

* This is all we see (for example):
* Need to step through the log

CEYWCETN | <smrTT>]

8 8 <TA8>

<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2020 CSE 444 - Winter 2020

After Crash

= If we see NO Commit statement:
* We UNDO both changes: A=8, B=8

* The transaction is atomic, since none of its actions have been
executed

* In we see that T has a Commit statement
* We don’t undo anything

 The transaction is atomic, since both it’s actions have been
executed

February 21, 2020 CSE 444 - Winter 2020 53

Recovery with Undo Log

After system’s crash, run recovery manager

» Decide for each transaction T whether it is
completed or not

« <START T>....<COMMIT T>.... =yes
« <START T>....<ABORT T>....... = yes
« <STARTT>...ccvniiiiiiiiieenne, = no

= Undo all modifications by incomplete transactions

February 21, 2020

Recovery with Undo Log

Recovery manager:

= Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed
then write X=v to disk

else ignore
<START T>: ignore

February 21, 2020

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second crash during
recovery?

Crash'!

February 21, 2020

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:
What happens if second crash during
recovery?

Crash'!

February 21, 2020

Recovery with Undo Log

Question1: Which updates

are undone ?
<T6,X6,v6> _
Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4, v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3> No problem! Log records are
<T2,X2,v2> idempotent. Can reapply.

Crash'!

February 21, 2020

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
I <START T>
INPUT(A) - When must 8
READ(A 1 3 we force pages 3
to disk ?
t=t*2 16 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) | 16 16 8 8 8
READB) | 8 16 8 ; ; @)
-
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) |-, 16 16 16 16 8
4
OUTPUT(B) |~ 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2020 CSE 444 - Winter 2020 59

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITEAL) | 16 16 8 8 { <T,A.8> >
INPUT(B) | 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 8 8 8
WRITE(B,!) 16 16 8 8 { <T,B,8> >
\/OUTPUT@ 16 16 | 16— 16 8
@ﬁu{(@r/m/ 16 16 16 16
commiT | FORCE {<COMMIT T

‘ RULES: log entry before OUTPUT before COMMIT h
February 21, 202(

Undo-Logging Rules

U1l: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

= Hence: OUTPUTs are done early, before the

transaction commits

February 21, 2020 CSE 444 - Winter 2020

Checkpointing

Checkpoint the database periodically

= Stop accepting new transactions

= Wait until all current transactions complete
= Flush log to disk

= Write a <CKPT> log record, flush
» Resume transactions

February 21, 2020 CSE 444 - Winter 2020

62

Undo Recovery with Checkpointinc

<T9,X9,v0> |
> other transactions

During recovery, (all completed)
Can stop at first <CKPT> 7
<CKPT> <START T2> \
<START T3
4 <START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 21, 2020 CSE 444 - Winter 2020 63

Nonquiescent Checkpointing

= Problem with checkpointing: database freezes
during checkpoint

= Would like to checkpoint while database is
operational

= Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

February 21, 2020 CSE 444 - Winter 2020 64

Nonquiescent Checkpointing

« Write a <START CKPT(T1,...,Tk)>

where T1,...,Tk are all active transactions. Flush
log to disk

= Continue normal operation

= When all of T1,...,Tk have completed, write
<END CKPT>, flush log to disk

February 21, 2020 CSE 444 - Winter 2020

Undo with Nonquiescent Checkpointing

Need to read
Back to start of
T4, T5, T6

February 21, 2020

<START CKPT T4, T5, T6>

<END CKPT>

>earlier transactions plus
T4, T5, T6

>T4, T5, T6, plus
later transactions

' later transactions

CSE 444 - Winter 2020

66

Undo with Nonquiescent Checkpointing

Need to read
Back to start of
T4, T5, T6

Q: do we need
<END CKPT> ?

<START CKPT T4, T5, T6>

<END CKPT>

>earlier transactions plus
T4, T5, T6

>T4, T5, T6, plus
later transactions

' later transactions

CSE 444 - Winter 2020

Undo with Nonquiescent Checkpointing

>earlier transactions plus

Need to read T4, 75, T6
Back to start of
74,75, 6 <START CKPT T4, T5, T6> |/
| T4, T5, T6, plus
<END CKPT> later transactions

! later transactions

Q: do we need
<END CKPT> Not really, it's implicit in seeing T4,T5,T6 commits

Implementing ROLLBACK

» Recall: a transaction can end in COMMIT or

ROLLBACK
= |dea: use the undo-log to implement ROLLBACK

" How ¢
* LSN = Log Sequence Number
* Log entries for the same transaction are linked, using

the LSN’s

 Read log in reverse, using LSN pointers

February 21, 2020 CSE 444 - Winter 2020 69

|mp|emnn|'inn POIIRACK

" Req

RO
" |de

= Ho

<T9,X9,v9>

(all completed)
<CKPT>
<START T2
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T2,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 21, 2020

CK

sing

CSE 444 - Winter 2020

REDO

NO-FORCE and NO-STEAL

February 21, 2020 CSE 444 - Winter 2020 71

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

72

Is this bad ?

Action t MemA | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B, 1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,) 16 16 16 8 8
COMMIT
OUTPUT(A)| 16 16 16 16 8 %
OuTPUTB)| 16 16 16 16 16

February 21, 2020 CSE 444 - Winter 2020 73

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | MemB | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8§TCrash!
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

74

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B

READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT <

OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

75

. Is this bad ? _ Yes, it's bad: lost update I

Action t Mem A | Mem B | Disk A | Disk B

READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT <

OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

76

Is this bad ?

|\
Crash'!

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

77

Is this bad ? No: that's OK.

|\
Crash'!

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2020

CSE 444 - Winter 2020

78

