
1February 10, 2020

Database System Internals

CSE 444 - Winter 2020

Concurrency Control - Locking

Announcements

§ Lab 2 due tonight
• Before final submission, clone fresh repo on attu

and run “ant test-report”

§ Lab 1+2 quiz on Wednesday in-class
• Closed book. Calculator allowed but you won’t need

one.

§ 544M Paper 2 due next week

CSE 444 - Winter 2020 2February 10, 2020

Conflicts

§Write-Read – WR
§Read-Write – RW
§Write-Write – WW

CSE 444 - Winter 2020 3February 10, 2020

Conflict Serializability

CSE 444 - Winter 2020 4

Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

February 10, 2020

Conflict Serializability

§ Every conflict-serializable schedule is serializable
§ The converse is not true in general

CSE 444 - Winter 2020 5

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

February 10, 2020

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• No edge for actions in the same transaction

§ The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Winter 2020 6February 10, 2020

Testing for Conflict-Serializability

Important:

Always draw the full graph, unless ONLY asked if
(yes or no) the schedule is conflict serializable

CSE 444 - Winter 2020 7February 10, 2020

Example 1

CSE 444 - Winter 2020 8

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

February 10, 2020

Example 1

CSE 444 - Winter 2020 9

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 10, 2020

Example 1

CSE 444 - Winter 2020 10

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 10, 2020

Example 1

CSE 444 - Winter 2020 11

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because
no conflict (A != B)

February 10, 2020

Example 1

CSE 444 - Winter 2020 12

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

February 10, 2020

Example 1

CSE 444 - Winter 2020 13

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because
same txn (2)

February 10, 2020

Example 1

CSE 444 - Winter 2020 14

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

February 10, 2020

Example 1

CSE 444 - Winter 2020 15

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

February 10, 2020

Example 1

CSE 444 - Winter 2020 16

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

February 10, 2020

Example 1

CSE 444 - Winter 2020 17

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

February 10, 2020

Example 1

CSE 444 - Winter 2020 18

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

A

February 10, 2020

Example 1

CSE 444 - Winter 2020 19

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

AAnd so on until compared every pair of actions…

February 10, 2020

Example 1

CSE 444 - Winter 2020 20

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
More edges, but repeats of the same directed edge
not necessary

AB

February 10, 2020

Example 1

CSE 444 - Winter 2020 21

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

February 10, 2020

Example 2

CSE 444 - Winter 2020 22

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

February 10, 2020

Example 2

CSE 444 - Winter 2020 23

1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 10, 2020

Example 2

CSE 444 - Winter 2020 24

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 10, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 25

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

February 10, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 26

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

February 10, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 27

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent
February 10, 2020

View Equivalence

CSE 444 - Winter 2020 28

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
February 10, 2020

View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S,

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S,
then T writes the final value of A in S’

CSE 444 - Winter 2020 29February 10, 2020

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable,

then it is also view serializable
• But not vice versa

CSE 444 - Winter 2020 30February 10, 2020

Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager
undoes its updates

§But some of its updates may have affected other
transactions !

CSE 444 - Winter 2020 31February 10, 2020

Schedules with Aborted Transactions

CSE 444 - Winter 2020 32

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

February 10, 2020

Schedules with Aborted Transactions

CSE 444 - Winter 2020 33

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

February 10, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Winter 2020 34February 10, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Winter 2020 35February 10, 2020

Recoverable Schedules

36

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Winter 2020February 10, 2020

Recoverable Schedules

37

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Winter 2020
How do we recover ?

February 10, 2020

Cascading Aborts

§ If a transaction T aborts, then we need to abort any
other transaction T’ that has read an element
written by T

§A schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that
has last written it has already committed.

CSE 444 - Winter 2020 38

We base our locking scheme on this rule!

February 10, 2020

Avoiding Cascading Aborts

39

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Winter 2020

Without cascading abortsWith cascading aborts

February 10, 2020

Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading

deletes

CSE 444 - Winter 2020 40February 10, 2020

Scheduler

§ The scheduler:
§Module that schedules the transaction’s actions,

ensuring serializability

§ Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Winter 2020 41February 10, 2020

Pessimistic Scheduler

Simple idea:
§Each element has a unique lock
§Each transaction must first acquire the lock before

reading/writing that element
§ If the lock is taken by another transaction, then

wait
§ The transaction must release the lock(s)

CSE 444 - Winter 2020 42February 10, 2020

Notation

CSE 444 - Winter 2020 43

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

February 10, 2020

A Non-Serializable Schedule

CSE 444 - Winter 2020 44

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

February 10, 2020

Example

45

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Winter 2020
Scheduler has ensured a conflict-serializable schedule

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule
February 10, 2020

But…

46

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

CSE 444 - Winter 2020

Locks did not enforce conflict-serializability !!! What’s wrong ?
February 10, 2020

Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must
precede all unlock requests

§ This ensures conflict serializability ! (will prove this
shortly)

CSE 444 - Winter 2020 47February 10, 2020

Example: 2PL transactions

48

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable

February 10, 2020 CSE 444 - Winter 2020

Example with Multiple Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

CSE 444 - Winter 2020 49

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

February 10, 2020

Two Phase Locking (2PL)

50

Theorem: 2PL ensures conflict serializability

CSE 444 - Winter 2020February 10, 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Winter 2020 51February 10, 2020

Two Phase Locking (2PL)

52

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

February 10, 2020 CSE 444 - Winter 2020

Two Phase Locking (2PL)

53

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

February 10, 2020 CSE 444 - Winter 2020

Two Phase Locking (2PL)

54

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

February 10, 2020 CSE 444 - Winter 2020

Two Phase Locking (2PL)

55

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

February 10, 2020 CSE 444 - Winter 2020

A New Problem:
Non-recoverable Schedule

56

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

CSE 444 - Winter 2020February 10, 2020

Strict 2PL

§ Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts

CSE 444 - Winter 2020 57February 10, 2020

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit

58
CSE 444 - Winter 2020

February 10, 2020

Summary of Strict 2PL

§ Ensures serializability, recoverability, and avoids
cascading aborts

§ Issues?

CSE 444 - Winter 2020 59February 10, 2020

Summary of Strict 2PL

§ Ensures serializability, recoverability, and avoids
cascading aborts

§ Issues: implementation, lock modes, granularity,
deadlocks, performance

CSE 444 - Winter 2020 60February 10, 2020

The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
§Examine all READ(A) or WRITE(A) actions
§Add appropriate lock requests
§On COMMIT/ROLLBACK release all locks
§Ensures Strict 2PL !

CSE 444 - Winter 2020 61February 10, 2020

The Locking Scheduler

Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !
§ When a lock is requested, check the lock table

• Grant, or add the transaction to the element’s wait list

§ When a lock is released, re-activate a transaction from its
wait list

§ When a transaction aborts, release all its locks
§ Check for deadlocks occasionally

CSE 444 - Winter 2020 62February 10, 2020

Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

63

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - Winter 2020February 10, 2020

Lock Granularity

§ Fine granularity locking (e.g., tuples)
•
•

§ Coarse grain locking (e.g., tables, predicate locks)
•
•

CSE 444 - Winter 2020 64February 10, 2020

Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
•
•

CSE 444 - Winter 2020 65February 10, 2020

Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks

CSE 444 - Winter 2020 66February 10, 2020

Deadlocks

§Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T1

§Deadlock detection
• Timeouts
• Wait-for graph

§Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting

CSE 444 - Winter 2020 71February 10, 2020

Lock Performance

CSE 444 - Winter 2020 72

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

February 10, 2020

Phantom Problem

§So far we have assumed the database to be a
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom
problem appears

CSE 444 - Winter 2020 75February 10, 2020

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020 76February 10, 2020

Phantom Problem

Phantom Problem

77

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020February 10, 2020

Phantom Problem

Phantom Problem

78

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020

This is conflict serializable ! What’s wrong ??

February 10, 2020

Phantom Problem

Phantom Problem

79

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020

Not serializable due to phantoms
February 10, 2020

Phantom Problem

Phantom Problem

§A “phantom” is a tuple that is
invisible during part of a transaction execution
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !

CSE 444 - Winter 2020 80February 10, 2020

Phantom Problem

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database, this may fail due to
phantoms

§ Strict 2PL guarantees conflict serializability,
but not serializability

81CSE 444 - Winter 2020February 10, 2020

Dealing With Phantoms

§ Lock the entire table, or
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks

• A lock on an arbitrary predicate

Dealing with phantoms is expensive !

CSE 444 - Winter 2020 82February 10, 2020

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Winter 2020 83

ACID

February 10, 2020

1. Isolation Level: Dirty Reads

§ “Long duration” WRITE locks
• Strict 2PL

§No READ locks
• Read-only transactions are never delayed

CSE 444 - Winter 2020 84

Possible pbs: dirty and inconsistent reads

February 10, 2020

2. Isolation Level: Read Committed
§ “Long duration” WRITE locks

• Strict 2PL
§ “Short duration” READ locks

• Only acquire lock while reading (not 2PL)

CSE 444 - Winter 2020 85

Unrepeatable reads
When reading same element twice,
may get two different values

February 10, 2020

3. Isolation Level: Repeatable Read
§ “Long duration” WRITE locks

• Strict 2PL
§ “Long duration” READ locks

• Strict 2PL

CSE 444 - Winter 2020 86

This is not serializable yet !!! Why ?

February 10, 2020

4. Isolation Level Serializable

§ “Long duration” WRITE locks
• Strict 2PL

§ “Long duration” READ locks
• Strict 2PL

§ Predicate locking
• To deal with phantoms

CSE 444 - Winter 2020 87February 10, 2020

READ-ONLY Transactions

CSE 444 - Winter 2020 88

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

May improve
performance

February 10, 2020

89

Commercial Systems

Always check documentation!
§DB2: Strict 2PL
§ SQL Server:

• Strict 2PL for standard 4 levels of isolation
• Multiversion concurrency control for snapshot

isolation
§ PostgreSQL: Snapshot isolation; recently:

seralizable Snapshot isolation (!)
§Oracle: Snapshot isolation

CSE 444 - Winter 2020
February 10, 2020

