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Database System Internals

CSE 444 - Winter 2020

Concurrency Control - Locking



Announcements

§ Lab 2 due tonight
• Before final submission, clone fresh repo on attu

and run “ant test-report”

§ Lab 1+2 quiz on Wednesday in-class
• Closed book. Calculator allowed but you won’t need 

one.

§ 544M Paper 2 due next week
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Conflicts

§Write-Read – WR
§Read-Write – RW
§Write-Write – WW
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Conflict Serializability
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Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
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Conflict Serializability

§ Every conflict-serializable schedule is serializable
§ The converse is not true in general
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Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions
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Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti, 
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• No edge for actions in the same transaction

§ The schedule is serializable iff the precedence 
graph is acyclic
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Testing for Conflict-Serializability

Important:

Always draw the full graph, unless ONLY asked if 
(yes or no) the schedule is conflict serializable
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because
no conflict (A != B)
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because
same txn (2)
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?
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Example 1

CSE 444 - Winter 2020 17

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 
T2 to T3
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 
T2 to T3

A
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

AAnd so on until compared every pair of actions… 
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3
More edges, but repeats of the same directed edge
not necessary

AB
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable

AB
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Example 2
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r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3
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Example 2
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1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)
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Example 2
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1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 10, 2020



View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

February 10, 2020



View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

February 10, 2020



View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent,  but not conflict-equivalent
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View Equivalence
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T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
February 10, 2020



View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S, 

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S, 
then T writes the final value of A in S’
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View-Serializability

A schedule is view serializable if it is view 
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable, 

then it is also view serializable
• But not vice versa
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Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager 
undoes its updates

§But some of its updates may have affected other 
transactions !
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Schedules with Aborted Transactions

CSE 444 - Winter 2020 32

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

February 10, 2020



Schedules with Aborted Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

February 10, 2020



Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Winter 2020February 10, 2020



Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Winter 2020
How do we recover ?

February 10, 2020



Cascading Aborts

§ If a transaction T aborts, then we need to abort any 
other transaction T’ that has read an element 
written by T

§A schedule avoids cascading aborts if whenever a 
transaction reads an element, the transaction that 
has last written it has already committed.
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We base our locking scheme on this rule!

February 10, 2020



Avoiding Cascading Aborts
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T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Winter 2020

Without cascading abortsWith cascading aborts

February 10, 2020



Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading 

deletes
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Scheduler

§ The scheduler:
§Module that schedules the transaction’s actions, 

ensuring serializability

§ Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation
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Pessimistic Scheduler

Simple idea:
§Each element has a unique lock
§Each transaction must first acquire the lock before 

reading/writing that element
§ If the lock is taken by another transaction, then 

wait
§ The transaction must release the lock(s)
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Notation
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Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

February 10, 2020



A Non-Serializable Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

February 10, 2020



Example

45

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

CSE 444 - Winter 2020
Scheduler has ensured a conflict-serializable schedule

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule
February 10, 2020



But…
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T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

CSE 444 - Winter 2020

Locks did not enforce conflict-serializability !!! What’s wrong ?
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Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must 
precede all unlock requests

§ This ensures conflict serializability !  (will prove this 
shortly)
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Example: 2PL transactions
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T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable

February 10, 2020 CSE 444 - Winter 2020



Example with Multiple Transactions

Equivalent to each transaction executing entirely 
the moment it enters shrinking phase
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T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

February 10, 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

CSE 444 - Winter 2020February 10, 2020



Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C
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Two Phase Locking (2PL)

52

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

February 10, 2020 CSE 444 - Winter 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

February 10, 2020 CSE 444 - Winter 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

February 10, 2020 CSE 444 - Winter 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

February 10, 2020 CSE 444 - Winter 2020



A New Problem: 
Non-recoverable Schedule
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T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); 
Commit

Abort

CSE 444 - Winter 2020February 10, 2020



Strict 2PL

§ Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts
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Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit

58
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Summary of Strict 2PL

§ Ensures serializability, recoverability, and avoids 
cascading aborts

§ Issues?
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Summary of Strict 2PL

§ Ensures serializability, recoverability, and avoids 
cascading aborts

§ Issues: implementation, lock modes, granularity, 
deadlocks, performance
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The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
§Examine all READ(A) or WRITE(A) actions
§Add appropriate lock requests
§On COMMIT/ROLLBACK release all locks
§Ensures Strict 2PL !
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The Locking Scheduler

Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !
§ When a lock is requested, check the lock table

• Grant, or add the transaction to the element’s wait list

§ When a lock is released, re-activate a transaction from its 
wait list

§ When a transaction aborts, release all its locks
§ Check for deadlocks occasionally
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Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

63

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:
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Lock Granularity

§ Fine granularity locking (e.g., tuples)
•
•

§ Coarse grain locking (e.g., tables, predicate locks)
•
•
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Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
•
•
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Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks
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Deadlocks

§Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T1

§Deadlock detection
• Timeouts
• Wait-for graph

§Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting
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Lock Performance
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Th
ro

ug
hp

ut

# Active Transactions

thrashing

Why ?
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Phantom Problem

§So far we have assumed the database to be a 
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom 
problem appears
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Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020 76February 10, 2020
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Phantom Problem
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Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020February 10, 2020

Phantom Problem



Phantom Problem

78

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020

This is conflict serializable ! What’s wrong ??

February 10, 2020
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Phantom Problem
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Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2020

Not serializable due to phantoms
February 10, 2020

Phantom Problem



Phantom Problem

§A “phantom” is a tuple that is 
invisible during part of a transaction execution 
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !
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Phantom Problem

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database, this may fail due to 
phantoms

§ Strict 2PL guarantees conflict serializability, 
but not serializability

81CSE 444 - Winter 2020February 10, 2020



Dealing With Phantoms

§ Lock the entire table, or
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks 

• A lock on an arbitrary predicate

Dealing with phantoms is expensive !
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Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
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ACID

February 10, 2020



1. Isolation Level: Dirty Reads

§ “Long duration” WRITE locks
• Strict 2PL

§No READ locks
• Read-only transactions are never delayed
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Possible pbs: dirty and inconsistent reads

February 10, 2020



2. Isolation Level: Read Committed 
§ “Long duration” WRITE locks

• Strict 2PL
§ “Short duration” READ locks

• Only acquire lock while reading (not 2PL)
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Unrepeatable reads 
When reading same element twice, 
may get two different values

February 10, 2020



3. Isolation Level: Repeatable Read 
§ “Long duration” WRITE locks

• Strict 2PL
§ “Long duration” READ locks

• Strict 2PL
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This is not serializable yet !!! Why ?
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4. Isolation Level Serializable

§ “Long duration” WRITE locks
• Strict 2PL

§ “Long duration” READ locks
• Strict 2PL

§ Predicate locking
• To deal with phantoms
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READ-ONLY Transactions

CSE 444 - Winter 2020 88

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE  FROM Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

May improve
performance

February 10, 2020
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Commercial Systems

Always check documentation!
§DB2: Strict 2PL
§ SQL Server:

• Strict 2PL for standard 4 levels of isolation
• Multiversion concurrency control for snapshot 

isolation
§ PostgreSQL: Snapshot isolation; recently: 

seralizable Snapshot isolation (!)
§Oracle: Snapshot isolation

CSE 444 - Winter 2020
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