
2/13/20

1

1February 13, 2020

Database System Internals

CSE 444 - Winter 2020

Concurrency Control Intro
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Announcements

§ Lab 2 due tonight
• Before final submission, clone fresh repo on attu

and run “ant test-report”

§ Lab 1+2 quiz on Wednesday in-class
• Closed book. Calculator allowed but you won’t need 

one.

§ 544M Paper 2 due next week
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About Lab 3

§ In lab 3, we implement transactions
§ Focus on concurrency control

• Want to run many transactions at the same time
• Transactions want to read and write same pages
• Will use locks to ensure conflict serializable execution
• Use strict 2PL

§ Build your own lock manager
• Understand how locking works in depth
• Ensure transactions rather than threads hold locks

• Many threads can execute different pieces of the same transaction
• Need to detect deadlocks and resolve them by aborting a transaction

• But use Java synchronization to protect your data structures
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Motivating Example 

4

Would like to treat 
each group of 

instructions as a unit

Client 1:
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

Client 2:
SELECT sum(money)
FROM Budget
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Transaction

START TRANSACTION

[SQL statements]

COMMIT or     ROLLBACK (=ABORT)

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).
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May be omitted if 
autocommit is off:

first SQL query
starts txn
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Motivating Example 

With autocommit and
without START TRANSACTION,
each SQL command
is a transaction

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget
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ROLLBACK

§ If the app gets to a place where it can’t 
complete the transaction successfully, it can 
execute ROLLBACK

§ This causes the system to “abort” the transaction
• Database returns to a state without any of the 

changes made by the transaction

§Several reasons: user, application, system

February 13, 2020
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Transactions

§Major component of database systems
§Critical for most applications; arguably more so 

than SQL

§ Turing awards to database researchers:
• Charles Bachman 1973
• Edgar Codd 1981 for inventing relational dbs
• Jim Gray 1998 for inventing transactions
• Mike Stonebraker 2015 for INGRES and Postgres

• And many other ideas after that
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ACID Properties
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ACID Properties

§Atomicity: Either all changes performed by 
transaction occur or none occurs

§Consistency: A transaction as a whole does not 
violate integrity constraints

§ Isolation: Transactions appear to execute one 
after the other in sequence

§Durability: If a transaction commits, its changes 
will survive failures

February 13, 2020
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What Could Go Wrong?

Why is it hard to provide ACID properties?

§Concurrent operations
• Isolation problems
• We saw one example earlier

§ Failures can occur at any time
• Atomicity and durability problems
• Later lectures

§ Transaction may need to abort

February 13, 2020
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Terminology Needed For Lab 3

§ STEAL or NO-STEAL
• Can an update made by an uncommitted transaction overwrite 

the most recent committed value of a data item on disk?

§ FORCE or NO-FORCE
• Should all updates of a transaction be forced to disk before 

the transaction commits?

§ Easiest for recovery: NO-STEAL/FORCE (lab 3)
§ Highest performance: STEAL/NO-FORCE (lab 4)
§ We will get back to this next week
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Concurrent Execution Problems

§Write-read conflict: dirty read, inconsistent read
• A transaction reads a value written by another 

transaction that has not yet committed
§Read-write conflict: unrepeatable read

• A transaction reads the value of the same object twice. 
Another transaction modifies that value in between the 
two reads

§Write-write conflict: lost update
• Two transactions update the value of the same object. 

The second one to write the value overwrites the first 
change
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Schedules
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A schedule is a sequence 
of interleaved actions 
from all transactions
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Example
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T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables 
in tx source code
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A Serial Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A = 2
B = 2

A = 102
B = 102

A = 204
B = 204
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A Serial Schedule
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T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

A = 2
B = 2

A = 4
B = 4

A = 104
B = 104
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Serializable Schedule
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A schedule is serializable if it is 
equivalent to a serial schedule
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A Serializable Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 102

A = 204
B = 204
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A Non-Serializable Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

February 13, 2020

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 4

A = 204
B = 104
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Serializable Schedules

§ The role of the scheduler is to ensure that the 
schedule is serializable
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Q: Why not run only serial schedules ?  
I.e. run one transaction after the other ?
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Serializable Schedules

§ The role of the scheduler is to ensure that the 
schedule is serializable
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Q: Why not run only serial schedules ?  
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially
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Still Serializable, but…
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

February 13, 2020
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To Be Practical

§Assume worst case updates:
• Assume cannot commute actions done by transactions

§ Therefore, we only care about reads and writes
• Transaction = sequence of R(A)’s and W(A)’s
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T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

February 13, 2020
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Conflicts

§Write-Read – WR
§Read-Write – RW
§Write-Write – WW
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Conflict Serializability
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Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

February 13, 2020
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Conflict Serializability

§Every conflict-serializable schedule is serializable
§ The converse is not true in general
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Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions
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Conflict Serializability
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Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020
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Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020
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Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020
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Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)
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Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)
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Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

February 13, 2020

33

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti, 
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• No edge for actions in the same transaction

§The schedule is serializable iff the precedence 
graph is acyclic

CSE 444 - Winter 2020 34February 13, 2020

34

Testing for Conflict-Serializability

Important:

Always draw the full graph, unless ONLY asked if 
(yes or no) the schedule is conflict serializable
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because
no conflict (A != B)

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because
same txn (2)

February 13, 2020
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Example 1

CSE 444 - Winter 2020 42

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 
T2 to T3

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from 
T2 to T3

A

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

AAnd so on until compared every pair of actions… 

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3
More edges, but repeats of the same directed edge
not necessary

AB

February 13, 2020
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable

AB

February 13, 2020

49

Example 2
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r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

February 13, 2020
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Example 2
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1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 13, 2020
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Example 2
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1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 13, 2020
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View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption

CSE 444 - Winter 2020 53

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

February 13, 2020

53

View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

February 13, 2020
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View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);
Lost write

Equivalent,  but not conflict-equivalent
February 13, 2020

55

View Equivalence
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T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
February 13, 2020
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View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S, 

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S, 
then T writes the final value of A in S’

CSE 444 - Winter 2020 57February 13, 2020
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View-Serializability

A schedule is view serializable if it is view 
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable, 

then it is also view serializable
• But not vice versa
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Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager 
undoes its updates

§But some of its updates may have affected other 
transactions !
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Schedules with Aborted Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

February 13, 2020
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Schedules with Aborted Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

February 13, 2020
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Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules

64

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Winter 2020February 13, 2020
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Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Winter 2020
How do we recover ?
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Cascading Aborts

§ If a transaction T aborts, then we need to abort any 
other transaction T’ that has read an element 
written by T

§A schedule avoids cascading aborts if whenever a 
transaction reads an element, the transaction that 
has last written it has already committed.
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We base our locking scheme on this rule!

February 13, 2020
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Avoiding Cascading Aborts

67

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Winter 2020

Without cascading abortsWith cascading aborts
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Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading 

deletes
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Scheduler

§The scheduler:
§Module that schedules the transaction’s actions, 

ensuring serializability

§Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation
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