
2/13/20

1

1February 13, 2020

Database System Internals

CSE 444 - Winter 2020

Concurrency Control Intro

1

Announcements

§ Lab 2 due tonight
• Before final submission, clone fresh repo on attu

and run “ant test-report”

§ Lab 1+2 quiz on Wednesday in-class
• Closed book. Calculator allowed but you won’t need

one.

§ 544M Paper 2 due next week

CSE 444 - Winter 2020 2February 13, 2020

2

About Lab 3

§ In lab 3, we implement transactions
§ Focus on concurrency control

• Want to run many transactions at the same time
• Transactions want to read and write same pages
• Will use locks to ensure conflict serializable execution
• Use strict 2PL

§ Build your own lock manager
• Understand how locking works in depth
• Ensure transactions rather than threads hold locks

• Many threads can execute different pieces of the same transaction
• Need to detect deadlocks and resolve them by aborting a transaction

• But use Java synchronization to protect your data structures

CSE 444 - Winter 2020 3February 13, 2020

3

Motivating Example

4

Would like to treat
each group of

instructions as a unit

Client 1:
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

Client 2:
SELECT sum(money)
FROM Budget

February 13, 2020 CSE 444 - Winter 2020

4

Transaction

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

5

May be omitted if
autocommit is off:

first SQL query
starts txn

February 13, 2020 CSE 444 - Winter 2020

5

Motivating Example

With autocommit and
without START TRANSACTION,
each SQL command
is a transaction

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget

CSE 444 - Winter 2020 6February 13, 2020

6

2/13/20

2

CSE 444 - Winter 2020 7

ROLLBACK

§ If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

§ This causes the system to “abort” the transaction
• Database returns to a state without any of the

changes made by the transaction

§Several reasons: user, application, system

February 13, 2020

7
CSE 444 - Winter 2020 8

Transactions

§Major component of database systems
§Critical for most applications; arguably more so

than SQL

§ Turing awards to database researchers:
• Charles Bachman 1973
• Edgar Codd 1981 for inventing relational dbs
• Jim Gray 1998 for inventing transactions
• Mike Stonebraker 2015 for INGRES and Postgres

• And many other ideas after that

February 13, 2020

8
CSE 444 - Winter 2020 9

ACID Properties

February 13, 2020

9

CSE 444 - Winter 2020 10

ACID Properties

§Atomicity: Either all changes performed by
transaction occur or none occurs

§Consistency: A transaction as a whole does not
violate integrity constraints

§ Isolation: Transactions appear to execute one
after the other in sequence

§Durability: If a transaction commits, its changes
will survive failures

February 13, 2020

10
CSE 444 - Winter 2020 11

What Could Go Wrong?

Why is it hard to provide ACID properties?

§Concurrent operations
• Isolation problems
• We saw one example earlier

§ Failures can occur at any time
• Atomicity and durability problems
• Later lectures

§ Transaction may need to abort

February 13, 2020

11
CSE 444 - Winter 2020 12

Terminology Needed For Lab 3

§ STEAL or NO-STEAL
• Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

§ FORCE or NO-FORCE
• Should all updates of a transaction be forced to disk before

the transaction commits?

§ Easiest for recovery: NO-STEAL/FORCE (lab 3)
§ Highest performance: STEAL/NO-FORCE (lab 4)
§ We will get back to this next week

February 13, 2020

12

2/13/20

3

13

Concurrent Execution Problems

§Write-read conflict: dirty read, inconsistent read
• A transaction reads a value written by another

transaction that has not yet committed
§Read-write conflict: unrepeatable read

• A transaction reads the value of the same object twice.
Another transaction modifies that value in between the
two reads

§Write-write conflict: lost update
• Two transactions update the value of the same object.

The second one to write the value overwrites the first
change

CSE 444 - Winter 2020February 13, 2020

13

Schedules

CSE 444 - Winter 2020 14

A schedule is a sequence
of interleaved actions
from all transactions

February 13, 2020

14

Example

CSE 444 - Winter 2020 15

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in tx source code

February 13, 2020

15

A Serial Schedule

CSE 444 - Winter 2020 16

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A = 2
B = 2

A = 102
B = 102

A = 204
B = 204

February 13, 2020

16

A Serial Schedule

CSE 444 - Winter 2020 17

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

A = 2
B = 2

A = 4
B = 4

A = 104
B = 104

February 13, 2020

17

Serializable Schedule

CSE 444 - Winter 2020 18

A schedule is serializable if it is
equivalent to a serial schedule

February 13, 2020

18

2/13/20

4

A Serializable Schedule

CSE 444 - Winter 2020 19

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 102

A = 204
B = 204

February 13, 2020

19

A Non-Serializable Schedule

CSE 444 - Winter 2020 20

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

February 13, 2020

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 4

A = 204
B = 104

20

Serializable Schedules

§ The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Winter 2020 21

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

February 13, 2020

21

Serializable Schedules

§ The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Winter 2020 22

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

February 13, 2020

22

Still Serializable, but…

CSE 444 - Winter 2020 23

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

February 13, 2020

23

To Be Practical

§Assume worst case updates:
• Assume cannot commute actions done by transactions

§ Therefore, we only care about reads and writes
• Transaction = sequence of R(A)’s and W(A)’s

CSE 444 - Winter 2020 24

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

February 13, 2020

24

2/13/20

5

Conflicts

§Write-Read – WR
§Read-Write – RW
§Write-Write – WW

CSE 444 - Winter 2020 25February 13, 2020

25

Conflict Serializability

CSE 444 - Winter 2020 26

Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

February 13, 2020

26

Conflict Serializability

§Every conflict-serializable schedule is serializable
§ The converse is not true in general

CSE 444 - Winter 2020 27

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

February 13, 2020

27

Conflict Serializability

CSE 444 - Winter 2020 28

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020

28

Conflict Serializability

CSE 444 - Winter 2020 29

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020

29

Conflict Serializability

CSE 444 - Winter 2020 30

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

February 13, 2020

30

2/13/20

6

Conflict Serializability

CSE 444 - Winter 2020 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

February 13, 2020

31

Conflict Serializability

CSE 444 - Winter 2020 32

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

February 13, 2020

32

Conflict Serializability

CSE 444 - Winter 2020 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

February 13, 2020

33

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• No edge for actions in the same transaction

§The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Winter 2020 34February 13, 2020

34

Testing for Conflict-Serializability

Important:

Always draw the full graph, unless ONLY asked if
(yes or no) the schedule is conflict serializable

CSE 444 - Winter 2020 35February 13, 2020

35

Example 1

CSE 444 - Winter 2020 36

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

February 13, 2020

36

2/13/20

7

Example 1

CSE 444 - Winter 2020 37

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 13, 2020

37

Example 1

CSE 444 - Winter 2020 38

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

February 13, 2020

38

Example 1

CSE 444 - Winter 2020 39

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because
no conflict (A != B)

February 13, 2020

39

Example 1

CSE 444 - Winter 2020 40

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

February 13, 2020

40

Example 1

CSE 444 - Winter 2020 41

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because
same txn (2)

February 13, 2020

41

Example 1

CSE 444 - Winter 2020 42

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

February 13, 2020

42

2/13/20

8

Example 1

CSE 444 - Winter 2020 43

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

February 13, 2020

43

Example 1

CSE 444 - Winter 2020 44

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

February 13, 2020

44

Example 1

CSE 444 - Winter 2020 45

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

February 13, 2020

45

Example 1

CSE 444 - Winter 2020 46

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

A

February 13, 2020

46

Example 1

CSE 444 - Winter 2020 47

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

AAnd so on until compared every pair of actions…

February 13, 2020

47

Example 1

CSE 444 - Winter 2020 48

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
More edges, but repeats of the same directed edge
not necessary

AB

February 13, 2020

48

2/13/20

9

Example 1

CSE 444 - Winter 2020 49

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

February 13, 2020

49

Example 2

CSE 444 - Winter 2020 50

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

February 13, 2020

50

Example 2

CSE 444 - Winter 2020 51

1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 13, 2020

51

Example 2

CSE 444 - Winter 2020 52

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

February 13, 2020

52

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 53

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

February 13, 2020

53

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 54

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

February 13, 2020

54

2/13/20

10

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Winter 2020 55

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);
Lost write

Equivalent, but not conflict-equivalent
February 13, 2020

55

View Equivalence

CSE 444 - Winter 2020 56

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
February 13, 2020

56

View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S,

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S,
then T writes the final value of A in S’

CSE 444 - Winter 2020 57February 13, 2020

57

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable,

then it is also view serializable
• But not vice versa

CSE 444 - Winter 2020 58February 13, 2020

58

Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager
undoes its updates

§But some of its updates may have affected other
transactions !

CSE 444 - Winter 2020 59February 13, 2020

59

Schedules with Aborted Transactions

CSE 444 - Winter 2020 60

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

February 13, 2020

60

2/13/20

11

Schedules with Aborted Transactions

CSE 444 - Winter 2020 61

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

February 13, 2020

61

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Winter 2020 62February 13, 2020

62

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Winter 2020 63February 13, 2020

63

Recoverable Schedules

64

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Winter 2020February 13, 2020

64

Recoverable Schedules

65

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Winter 2020
How do we recover ?

February 13, 2020

65

Cascading Aborts

§ If a transaction T aborts, then we need to abort any
other transaction T’ that has read an element
written by T

§A schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that
has last written it has already committed.

CSE 444 - Winter 2020 66

We base our locking scheme on this rule!

February 13, 2020

66

2/13/20

12

Avoiding Cascading Aborts

67

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Winter 2020

Without cascading abortsWith cascading aborts

February 13, 2020

67

Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading

deletes

CSE 444 - Winter 2020 68February 13, 2020

68

Scheduler

§The scheduler:
§Module that schedules the transaction’s actions,

ensuring serializability

§Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Winter 2020 69February 13, 2020

69

