Setup

Pk [setupin

Setuphame
SerupType

Device
Resolution

Fite
SetupCondition

Trial_has_Trajectory

February 5, 2020

Database System Internals

TR

) l

T\

AN
N

1 —
'n

4
5

[N

&
Borc

o
JANa [
el 4
sa»co(

Gendry

‘-IL‘-IEL'

3

i

B

i

Query Optimization (part 3)

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

CSE 444 - Winter 2020

(a) Traditional parallel query plan

gCube shuffle-based parallel

Selinger Optimizer History

= 1960’s: first database systems

* Use tree and graph data models

= 1970: Ted Codd proposes relational model

* E.F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 1970

= 1974: System R from IBM Research

* One of first systems to implement relational model

= 1979: Seminal query optimizer paper by P. Selinger et.
al.

* Invented cost-based query optimization
 Dynamic programming algorithm for join order computation

February 5, 2020 CSE 444 - Winter 2020 2

References

= P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.
Price. Access Path Selection in a Relational Database

Management System. Proceedings of ACM SIGMOD,
1979. Pages 22-34.

February 5, 2020 CSE 444 - Winter 2020 3

Selinger Algorithm

Selinger enumeration algorithm considers
» Different logical and physical plans at the same time

= Costofaplanis IO + CPU

= Concept of interesting order during plan enumeration

» A sorted order as that requested by ORDER BY or GROUP GY
» Or order on attributes that appear in equi-join predicates
« Because they may enable cheaper sort-merge joins later

February 5, 2020 CSE 444 - Winter 2020 4

More about the Selinger Algorithm

= Step 1: Enumerate all access paths for a single relation

* File scan or index scan
 Keep the cheapest for each interesting order

= Step 2: Consider all ways to join two relations
* Use result from step 1 as the outer relation
 Consider every other possible relation as inner relation
« Estimate cost when using sort-merge or nested-loop join
 Keep the cheapest for each interesting order

= Steps 3 and later: Repeat for three relations, etc.

February 5, 2020 CSE 444 - Winter 2020 5

Example From Selinger Paper

EMP

NAME DNO JOB SAL
SMITH 50 12 8500
JONES 50 5 15000
DOE 51 5 9500
DEPT [pno |DNAME L.OC
50 MFG DENVER
51 BILLING BOULDER
52 SHIPPING DENVER
SELECT
JOB | joB |TITLE RO
5 CLERK WHERE
6 TYPIST AND
8 SALES AND
12 MECHANIC AND

February 5, 2020

NAME, TITLE, SAL, DNAME
EMP, DEPT ,JOB
TITLE="CLERK'
LOC="'DENVER'

EMP . DNO=DEPT . DNO

EMP .JOB=JOB.JOB

“Retrieve the name, salary, job title, and department
name of employees who are clerks and work for
departments in Denver.”

Figure 1. JOIN example

CSE 444 - Winter 2020

Step1: Access Path Selection for Single Relations
* Eligible Predicates: Local Predicates Only

* “Interesting” Orderings: DNO, JOB

CHEAPEST
EMP: .
index index segment
EMP.DNO EMP.JOB scan on
EMP
C(EMP.DNO} C(EMP.JOB) C(EMP seg. scan)
DEPT:
index Segment
CHEAPEST | DEPT.ONO Scan on
DEPT SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
N Nz WHERE TITLE='CLERK’
C?DEPT.DNO) C(DEPT seg. scan) AND LOC="DENVER’
pruned AND EMP . DNO=DEPT . DNO
AND EMP .JOB=JOB.JOB
“Retrieve the name, salary, job title, and department
JOB: name of employees who are clerks and work for
index segment departments in Denver.”
JOB.JOB scan on
JOB CHEAPEST Figure 1. JOIN example
N N
CZJOB.JOB) C&OB seg. scan)

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’ AND LOC='DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB

February 5, 2020 CSE 444 - Winter 2020 7

Step1: Resulting Plan Search Tree for Single Relations

EMP ¢ DEPT

Index Index

EMP.J0OB

{ndex
EMP.DNO

Index

DEPT.DNO JOB.JOB

JO8

N, N, N, N,
C{EMP.DNQ) C(EMP.JOB) C{DEPT.DNQ) C{JOB.JOB})
DNO order JO8 order DNO order JOB order

Cost estimate for scanning |

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB

segment
scan
JOB

Ny
CiJOB sey. scan)
unordered

Interesting order]

WHERE TITLE=‘CLERK’ AND LOC='DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB

February 5, 2020 CSE 444 - Winter 2020

Step2: Pairs of Relations (nested loop joins)

(EMP, JOB) {DEPT, EMP) (JOB, EMP)

— {EMP, DEPT)
segment
Index tndex index Index mgnm
) ‘ JOB.JOB !
EMP.DNO EMP.JOB EMP.DNO Index 108
DEPT.DNO
— Ny 1 1 Ny N, ¢ Ny N3
Index index Index Index index Index tndex
DEPT.DNO DEPT.DNO J08.JOB J0OB.J0B EMP.DNO EMP.JOB EMP.JOB
Add as inner
N, ® Ny ® Ng ® NSL N, ® Ng ® Ng @
nested loop | ceono C{E.JOB) C(E.DNO) CIE.JOB) C(D.DNO) ClJ.J0B) ClJ seg scan)
+ + + + + + +
N,C(D.DNO) N,Cg(D.ONO) N,CgU.JOB} N,C¢l.JOB) N,Cp(E.DNO) NyC,(EJOB] N3C,(E.JOB)
DNO order JOB order DNO order JOB order DNQ order JOB order unordered

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB

WHERE TITLE='CLERK’ AND LOC="DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB
February 5, 2020 CSE 444 - Winter 2020 9

n2: Pairs of Relations (sort-merge joins

(EMP,DEPT)

E.DNO
with
D.DNO

DNO order

(ONQ"('ONG'3) ¥

February 5, 2020

Index
E.JOB

Ny

JOB order

(or'r 'gor3) o0ty

{EMP, JOB)

Sort JOB seg scan
by JOBinto L,

(%1 'sora) ®™s
+
{ueds Bss gOr) V%%

(DEPT, EMP}

index
D.DNO

{JOB, EMP}

Sort JOB
seg. scan
by JOB
into Lz
Merge Merge Merge Merge
D.DNO D.DONO JJOB Ly
with with with with
() E.DNO E.JOB E.JOB
N, ! N, & Ng l Ng
DNO order DNO order JOB order JOB order
O+0 2] 0 +0
3 { 2 i g
s =]]) =
5 5 g 5 s
= 2 2 ® m 8
o o P [
iy m L o 8
(o]

CSE 444 - Winter 2020

10

Step3:Add Third Relation (sort-merge join)

Cheapest plan
with that order

Sort

JOB seg
scan by
JOBinto L,

o
o

{*15
S 4(ueds Bas gOT) V%%
+{ONGig-ap ¥

February o,

{EMP, DEPT)

Cheapest plan
with other order

by JOBinto L,

¢
+ 0 A+ 0O
L R
§ o T"' g§
« © -~ O
. Z e o -
g = 88 8 ¢
J‘—-

AAAA

Sort JOB seg scan

(ONT'Q

ONG (p-3)) ¥ o

D.DNO

®
O+
-k
R =
Kl
o 5
o 9
z.
e

(EMP, JOB)

D.DNO l
o +
i f
i
s &
[w]
° 3
=
B

son(a""umrdend

by DNO
into La

11

Next Example Acks

Implement variant of Selinger optimizer in
SimpleDB

Designed to help you understand how this would
work in SimpleDB

Many following slides from Sam Madden at MIT

February 5, 2020 CSE 444 - Winter 2020

Selinger Optimizer

Problem:
= How to order a series of joins over N tables A,B,C,...

E.g. A.a=Bb AND A.c=D.d AND B.e=C/f

N! ways to order joins; e.g. ABCD, ACBD,

_ 1 2(V-1) lans/ordering; e.g.
CN—l—N(v-1)" %9

(((AB)C)D),((AB)(CD)))

Multiple implementations (hash, nested loops)

Naive approach does not scale
« E.g. N =20, #join orders 20! = 2.4 x 10'®; many more plans

February 5, 2020 CSE 444 - Winter 2020 13

Selinger Optimizer

= Only left-deep plan: (((AB)C)D) - eliminate Cy;.
= Push down selections
= Don’t consider cartesian products

» Dynamic programming algorithm

February 5, 2020 CSE 444 - Winter 2020 14

Dynamic Programming

OrderJoins(...): SimpleDB Lab5:
. . . you implement orderJoins
R = set of relations to join

Ford=1toN: /* where N=|R]| */

For S in {all size-d subsets of R}:

optjoin(S) = (S - a) join q,
where a is the single relation that minimizes:

. .. . computeCostAndCardOfSubplan
min.cost to join (S - a) with a +

min.access cost FOI’ a

Note: optjoin(S-a) is cached from previous iterations

February 5, 2020 CSE 444 - Winter 2020 15

g orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost(OptJoin(S))
= Assume all joins are Nested | A
Loop

February 5, 2020 CSE 444 - Winter 2020 16

» orderJoins(A, B, C, D)
= Assume all joins are NL

=d=1

A= Dbestway to access A
(sequential scan, predicate-
pushdown on index, etc)

B = best way to access B
« C =best way to access C
D = best way to access D

» Total number of steps:
choose(N, 1)

February 5, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
C Seq scan | 120
D B+tree 400
scan

CSE 444 - Winter 2020

“ orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100

ad=2 scan
B Seq. scan |50

- {A,B} = AB or BA

use previously computed

best way to access Aand B

February 5, 2020 CSE 444 - Winter 2020

» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156

February 5, 2020 CSE 444 - Winter 2020

» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

 {B,C}=BCorCB

February 5, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156
{B, C} BC 98

CSE 444 - Winter 2020

20

» orderJoins(A, B, C, D)

md=2

- {A,B} =AB or BA
use previously computed
vy 10 access A and B

be
oL bee

BC or CB

February 5, 2020

!

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
A, B} BA 156
{B, C BC 98

CSE 444 - Winter 2020

2]

» orderJoins(A, B, C, D)

md=2

 {A,B} =AB or BA
use previously computed

- {B,D}=BD or DB
- {A,D} =AD or DA

February 5, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98

CSE 444 - Winter 2020

22

» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed

- {B,D}=BD or DB
- {A,D} =AD or DA

» Total number of steps: choose(N, 2) x 2

February 5, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98

CSE 444 - Winter 2020

23

Example &

» orderJoins(A, B, C, D)

=d=3

« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A

February 5, 2020

Subplan S optoin(S) Cost(OptJoin(S))
Index scan 100

B Seq. scan 50

{A, B} BA 156

{8, C} BC 98

(A, B, C} BAC 500

CSE 444 - Winter 2020

24

» orderJoins(A, B, C, D)

=d=3

« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A

February 5, 2020

Subplan S optoin(S) Cost(OptJoin(S))
A Index scan 100

B Seq. scan 50

{A, B} BA 156

(B, C} | BC 98
E—

(A, B, C} BAC 500

CSE 444 - Winter 2020

optdoin(B,C)
and its cost are
already cached
in table

25

optoin(S)

Cost(OptJoin(S))

Subplan §
Example A

Index scan 100

B Seq. scan 50
= orderJoins(A, B, C, D) A B} oA 156
(8, C} | BC 98
=d=3 (A, B, C} BAC 500
- {AB,C} = optJoin(B,C)

Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C

February 5, 2020 CSE 444 - Winter 2020

and its cost are
already cached
in table

26

Subplan S optoin(S) Cost(OptJoin(S))
EXG MEC Ie A Index scan 100

B Seq. scan 50
= orderJoins(A, B, C, D) A B} oA 156
(8, C} | BC 98

=d=3

BAC 500

fTascl- | b= .
u optdoin(B,C)

Remove A: compare A({B,C}) to ({B,C})A :
Remove B: compare B(A.C}) to ({A.CHB ity et
Remove C: compare C({A,B}) to ({A,B})C in table

February 5, 2020 CSE 444 - Winter 2020

optoin(S)

Cost(OptJoin(S))

Subplan §
Example .

Index scan 100

B

Seq. scan 50

» orderJoins(A, B, C, D)

=d=3

BA 156
{8, C} | BC 98
BAC 500

-le,B,Cﬂ=

Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C

« {AB,D} =
Remove A: compare A({B,D}) to ({B,D})A

. (ACD} =...
. {B,CD}=...

optdoin(B,C)
and its cost are
already cached
in table

» Total number of steps: choose(N, 3) x 3 x 2

February 5, 2020 CSE 444 - Winter 2020

» orderJoins(A, B, C, D)

nd=4
 {AB,C,D} =

Subplan S | optloin(S) | Cost(OptJoin(S))
A Index 100
scan

B Seq. scan | 50

(A B] |BA 156

{B, C} BC 98

{A, B, C} |BAC 500

{B, C, D} | | DBC 150

Remove A: compare AI_{_&,Q_QDIto ({B,C,D})A
Remove B: compare B({A,C,D}) to ({A,C,

Remove C: compare C({A,B,D}
Remove D: compare D({A,B,C}) to ({A,B,

to ({A,

C,D})B
B,D})C
B,C})D

" optJoin(B, C, D)
and its cost are
already cached
in table

» Total number of steps: choose(N, 4) x 4 x 2

February 5, 2020

CSE 444 - Winter 2020

29

Interesting Orders

= Some query plans produce data in sorted order
* E.g scan over a primary index, merge-join
* Called interesting order

= Next operator may use this order
* E.g. can be another merge-join

= For each subset of relations, compute multiple optimal
plans, one for each interesting order

= Increases complexity by factor k+1, where k=number of
interesting orders

February 5, 2020 CSE 444 - Winter 2020 KK

Asymmetric, cost depends on the order
= Left: Outer relation Right: Inner relation

= For nested-loo?-ioin, we try to load the outer
(typically smaller) relation in memory, then
read the inner relation one page at a time

B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

= For index-join,

we assume right (inner) relation has index

February 5, 2020 CSE 444 - Winter 2020

= Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-
pass), more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T

2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,
worse if more relations

3. Nested loop join, consider top-down iterator next()

1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base
relation T multiple times

2. (R, (S, T)): Reads the chunks of R once, reads computed relation
(S, T) multiple times, either more time or more space

February 5, 2020 CSE 444 - Winter 2020 35

Implementation in SimpleDB (lab5)

1.

JoinOptimizer.java (and the classes used

there)
>
S.d=U.q
2. Returns vector of “LogicalloinNode” \
Two base tables, two join attributes, predicate AN U
e.g. R(a, b), S, d), Tla, f), Ulp, q| B6-T
(R, S, R.q, S.c, =)

3.

Recall that SimpleDB keeps all attributes of T
R, S after their join R.q, R.b, S.c, S.d /

Output vector looks like:
<(R, S, R.q, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

February 5, 2020 CSE 444 - Winter 2020 36

Implementation in SimpleDB (lab5)

Any advantage of returning pairs?

= Flexibility to consider all linear plans
S<é|)!$ S, R.CI,S.C), (R, T, R.b, T.f), (U, S, U.q, ><]

More Details: / \><

1. You mainly need to implement “orderJoins(..)” y

2. "“CostCard” data structure stores a plan, its cost
and cardinality: you would need to estimate

them a=9¢
3. “PlanCache” stores the table in dyn. Prog:

Maps a set of LIN to

a vector of LIN (best plan for the vector), R S
its cost, and its cardinality

LIJN = LogicalJoinNode

February 5, 2020 CSE 444 - Winter 2020 37

