Database System Internals

Query Optimization (part 1)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

January 29, 2020

1

CSE 444 - Winter 2020 1

Query Optimization Overview

SQL query
| Parse & Rewrite Query
. Logical
Query \ Select Logical Plan \ plan
optimization
| Select Physical Plan
\ - Physical
r) plan
\ Query Execution \
B
‘ Disk
orvo 25, 2020 s wineraozo

4

Announcements

=Lab 2 part 1 due Today

= Homework 2 due Monday

January 31, 2020

2

CSE 444 - Winter 2020 2

What We Already Know...

Supplier (sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)

Supply (sno,pno,price)

For each SQL query....

SELECT S.sname

FROM Supplier S, Supply U

WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno

AND U.pno = 2

There exist many logical query plans...

January 29, 2020 CSE 444 - Winter 2020 5

Query Optimization Overview

We know how to compute the cost of a
plan

Next: Find a good plan automatically?

This is the role of the query optimizer

January 29, 2020

3

CSE 444 - Winter 2020 3

Example Query: Logical Plan 1

Tesname

Tsscity="Seattl’ A state=WA A pno=2

aobmared]

Supplier Supply

January 29, 2020

6

CSE 444 - Winter 2020 6

1/31/20

Example Query: Logical Plan 2

Tsname
Osscity="Seattle’ /| ss\{ \pnu—
Supplier Supply

January 29, 2020

7

CSE 444 - Winter 2020 7

Example Query: Physical Plan 2

(On the fly) Tisname

(On the fly) ‘

Tscity="Seattle’ A sstate=WA A pno=2

(Index nested loop) S

Supplier Supply
(File scan) (Index scan)

January 29, 2020

10

CSE 444 - Winter 2020 10

What We Also Know

= For each logical plan...

= There exist many physical plans

January 29, 2020

8

CSE 444 - Winter 2020 8

Query Optimizer Overview

= Input: A logical query plan
= Output: A good physical query plan

January 29, 2020

11

CSE 444 - Winter 2020 n

Example Query: Physical Plan 1

(On the fly) Tisname

(On the fly) ‘

Oscity="Seattle’ A sstate=WA' A\ pno=2

(Nested loop) S

Supplier Supply
(File scan) (File scan)

January 29, 2020

9

CSE 444 - Winter 2020 9

Query Optimizer Overview

= Input: A logical query plan
= Output: A good physical query plan
= Basic query optimization algorithm
« Enumerate alternative plans (logical and physical)
» Compute estimated cost of each plan
« Compute number of I/Os
« Optionally take into account other resources
« Choose plan with lowest cost
« This is called cost-based optimization

January 29, 2020

12

CSE 444 - Winter 2020 12

1/31/20

Two Types of Optimizers

= Rule-based (heuristic) optimizers:
« Apply greedily rules that always improve plan
« Typically: push selections down
« Very limited: no longer used today

= Cost-based optimizers:
« Use a cost model to estimate the cost of each plan
« Select the “cheapest” plan
« We focus on cost-based optimizers

CSE 444 - Spring 2019 13

13

Key Decisions for Implementation

Search Space
What form of plans do we consider?

Optimization rules

Optimization algorithm

CSE 444 - Winter 2020

= No magic “best” plan: depends on the data

= In order to make the right choice
« Need to have statistics over the data
* TheB’'s, the T’s, the V's
« Commonly: histograms over base data
+ In SimpleDB as well... lab 5.

Januar) y 29, 2020 CSE 444 - Winter 2020 14

Search Space — Type of Plan

>
SN >
N/N\R4 R2 N/ \N
FATEVANEVAN
R3 R1 R2 R4

Left-deep plan Bushy plan

Linear plan: One input to each join is a relation from disk
Can be either left or right input

January 29, 2020

Key Decisions for Implementation

Search Space
Optimization rules

Optimization algorithm

y 29, 2020 CSE 444 - Winter 2020

Key Decisions for Implementation

Search Space

Optimization rules
Which algebraic laws do we apply?

Optimization algorithm

CSE 444 - Winter 2020

1/31/20

1/31/20

Optimization Rules — RA equivalencies Example: Simple Algebraic Laws Example: Simple Algebraic Laws

= Selections

« Commutative: g41(0c2(R)) same as o¢(oc1(R))
« Cascading: g¢1pc2(R) same as a¢2(0c1(R)) = Example: R(A, B, C, D), S(E, F, G) = Example: R(A, B, C, D), S(E, F, G)
6 =3 (R > p= S) = R I p=¢ 5 F=3(S)

= Projections 6 r=3(R>p=eS) =

« Cascading

G A=5AND G=9 (R I p=¢ S) = G A=5AND G=9 (R > p=¢ S) =

= Joins
* Commutative : R @ S same as S @ R
« Associative: R @ (S T)sameas (Rx S) x T

e T m e
19 20 21

Example: Simple Algebraic Laws Commutativity, Associativity, Distributivity Laws Involving Selection

" Example: R(A B, €, D). S(E. . 6) o omoc(R) = o (o o(R)) = o o(R) N o o(R)
- - o corc(R) = o c(R) Us ¢(R)
6 F=3(R I p=g S) = R X1 p=g 0 =3 (S) RuS=SUR, RUu(SuUT)=(RUS)UT 6c(R™S)=cc(R) S

RpS=SBIR, R (SBIT)=(R>IS)>aT

G A=5AND G=9 (R D p= S) = & a=5(R) < D= 66=9(S) 6c(R-S)=cc(R)-S
cc(RUS)=occ(R)Ucc(S) S
‘RM(SUT) = (RNS)U(RNT) ‘ (Sc(R[XIS):G(;(R)lX]S’””:/ Ass_umingCon
I attnbu(esoer
22 23 24

Laws Involving Projections

Mm(R > S) = Mm(IR(R) >4 T(S))

Im(IIN(R)) = TIM(R)
/* note that M < N */

= Example R(A,B,C,D), S(E, F, G)
Tag,6(R > p=g S) =TT (IT2(R) D p=¢ T1+(S))

January 29, 2020

Laws for grouping and aggregation

8(yA aga®(R)) = vA, aggB)(R)

YA, aggB)(S(R)) = v, agg®)(R)
if agg is “duplicate insensitive”

Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

0 |
28

Laws Involving Projections

Mm(R > S) = Mm(IR(R) >4 T(S))

Mm(IIN(R)) = TIM(R)
/* note that M < N */

= Example R(A,B,C,D), S(E, F, G)
Map6(R > p=e S) = g6 (Mapp(R) < p=¢ IMe,6(S))

January 29, 2020

Laws Involving Constraints

Product(pid, pname, price, cid)k
Company(cid, cname, city, state)

‘Hpid, price(Product Mcig=cia Company) = Ipig, price(Product)‘

5 |
29

Laws for grouping and aggregation

YA aggD)R(A,B) < B=c S(C,D)) =
YA, aga@)(R(A,B) 1 B=c (¥, agg)S(C,D)))

January 29, 2020

Search Space Challenges

= Search space is huge!
« Many possible equivalent trees
« Many implementations for each operator

« Many access paths for each relation
« File scan or index + matching selection condition

= Cannot consider ALL plans
« Heuristics: only partial plans with “low” cost

e 29,2020 |
30

1/31/20

Search Space
Optimization rules

Optimization algorithm

y 31,2020 CSE 444 - Winter 2020

Logical plan

= What logical plans do we consider (left-deep,
bushy?) Search Space

= Which algebraic laws do we apply, and in which
context(s)? Optimization rules

= In what order do we explore the search space?
Optimization algorithm

y 29, 2020 CSE 444 - Winter 2020

Even More Key Decisions!

Physical plan
= What physical operators to use?

= What access paths to use (file scan or index)?
= Pipeline or materialize intermediate results?

These decisions also affect the search space

y 29, 2020 CSE 444 - Winter 2020

Two Types of Optimizers

= Heuristic-based optimizers:

« Apply greedily rules that always improve plan
« Typically: push selections down
« Very limited: no longer used today

= Cost-based optimizers:
« Use a cost model to estimate the cost of each plan
« Select the “cheapest” plan
« We focus on cost-based optimizers

CSE 444 - Winter 2020

January 29, 2020

Approaches to Search Space Enumeration

= Complete plans
= Bottom-up plans

= Top-down plans

January 29, 2020 CSE 444 - Winter 2020

Complete Plans

SELECT*
RéA,B FROMR, S, T
S(B.C WHERE R.B=S.B and
T(C.D) S.C=T.C and
R.A<40
B
/\ .
™ / \ Why is this
T search space
/ \ On<do B inefficient ?

ot b A

‘ Answer: No way to do early pruning ‘

January 29, 2020 CSE 444 - Winter 2020

1/31/20

Top-down Partial Plans

R(AB SELECT*

SéB.C FROMR, S, T ‘

T(C.D) WHERE R.B=S.B and S.C=T.C and R A<40
Why is this
search space
inefficient ?

D> >

™ s

T SELECTRA, TD
SELECT* FROMR, S, T

FROI WHERE RB=S.B
SELECT* s
FROMR
WHERE RA<40

MR, S
WHERE RB=SB and S.C=TC
‘ Answer: Can't compute costs of a plan on SQL text alone ‘

and RA<40

January 31, 2020

37

CSE 444 - Winter 2020 37

Bottom-up Partial Plans

R(A.B) SELECT *

S(B.C) FROMR, S, T

T(C.D) WHERE R.B=S.B and S.C=T.C and R A<40
Why is this

bet

; L\
b e Y
PONT Y

‘ We will prune bad plans for sub-expressions ‘

January 29, 2020

38

CSE 444 - Winter 2020 38

Two Types of Plan Enumeration Algorithms

= Dynamic programming (in class)
« Based on System R (aka Selinger) style optimizer[1979]
« Limited to joins: join reordering algorithm
« Bottom-up

= Rule-based algorithm (will not discuss)
- Database of rules (=algebraic laws)
« Usually: dynamic programming
« Usually: top-down

January 29, 2020

39

CSE 444 - Winter 2020 39

1/31/20

