
1January 29, 2020

Database System Internals

CSE 444 - Winter 2020

Join Algorithms (cont.)

Announcements

§ Lab 2 part 1 due Friday!

CSE 444 - Winter 2020 2January 29, 2020

Summary of External Join Algorithms

§Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

§ Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

§Merge Join: 3B(R)+3B(S)
• B(R)+B(S) <= M2

§Partitioned Hash Join: (coming up next)

CSE 444 - Winter 2020 3January 29, 2020

Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

CSE 444 - Winter 2020 4January 29, 2020

Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k, for all i

CSE 444 - Winter 2020 5January 29, 2020

Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k, for all i

§Goal: each Ri should fit in main memory:
B(Ri) ≤ M

CSE 444 - Winter 2020 6January 29, 2020

Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k, for all i

§Goal: each Ri should fit in main memory:
B(Ri) ≤ M

How do we choose k?

CSE 444 - Winter 2020 7January 29, 2020

Partitioned Hash Algorithms

§ We choose k = M-1 Each bucket has size approx.
B(R)/(M-1) ≈ B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M ≤ M, i.e. B(R) ≤ M2

CSE 444 - Winter 2020 8January 29, 2020

Partitioned Hash Algorithms

§ We choose k = M-1 Each bucket has size approx.
B(R)/(M-1) ≈ B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M ≤ M, i.e. B(R) ≤ M2

CSE 444 - Winter 2020 9

Partitioned Hash Algorithms

• We choose k = M-1 Each bucket has size approx.
B(R)/(M-1) ≈ B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M ≤ M, i.e. B(R) ≤ M2

CSE 444 - Winter 2019 57

January 29, 2020

Partitioned Hash Join (Grace-Join)

R ⨝ S

CSE 444 - Winter 2020 10

Note: partitioned hash-join
is sometimes called

grace-join

January 29, 2020

Partitioned Hash Join (Grace-Join)

R ⨝ S
§Step 1:

• Hash S into M-1 buckets
• Send all buckets to disk

§Step 2
• Hash R into M-1 buckets
• Send all buckets to disk

§Step 3
• Join every pair of buckets

CSE 444 - Winter 2020 11

Note: grace-join is
also called

partitioned hash-join

January 29, 2020

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3

3 0

CSE 444 - Winter 2020 12

Partitioned Hash-Join Example

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3 3

0

CSE 444 - Winter 2020 13

Partitioned Hash-Join Example

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3 3

0

1 7

CSE 444 - Winter 2020 14

Partitioned Hash-Join Example

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3 3

0

1

7

CSE 444 - Winter 2020 15

Partitioned Hash-Join Example

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

3

0

1

7

4 3

CSE 444 - Winter 2020 16

Partitioned Hash-Join Example

0

1

2

3

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

3

0

1

7

4

3

CSE 444 - Winter 2020 17

Partitioned Hash-Join Example

0

1

2

3

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

4

3

3 7

CSE 444 - Winter 2020 18

Partitioned Hash-Join Example

0

1

2

3

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

4

3 3 7

CSE 444 - Winter 2020 19

Partitioned Hash-Join Example

0

1

2

3

January 29, 2020

Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3 3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

CSE 444 - Winter 2020 20

Partitioned Hash-Join Example

January 29, 2020

Step 2: Read relation R one page at a time and hash into same 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

CSE 444 - Winter 2020 21

Partitioned Hash-Join Example

0

1

2

3

January 29, 2020

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer
1 2

Output buffer

CSE 444 - Winter 2020 22

Partitioned Hash-Join Example

January 29, 2020

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer

CSE 444 - Winter 2020 23

Partitioned Hash-Join Example

January 29, 2020

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer

CSE 444 - Winter 2020 24

Partitioned Hash-Join Example

January 29, 2020

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer

0 4

CSE 444 - Winter 2020 25

Partitioned Hash-Join Example

January 29, 2020

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer

0 4

CSE 444 - Winter 2020 26

Partitioned Hash-Join Example

January 29, 2020

4 4

Partitioned Hash-Join

§ Partition both relations
using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

B main memory buffers DiskDisk

Original Relation OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1

2

M-1
. . .

CSE 444 - Winter 2020 27January 29, 2020

Partitioned Hash-Join

§ Partition both relations
using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

❖ Read in a partition of R,
hash it using h2 (<> h!).
Scan matching partition of
S, search for matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original Relation OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1

2

M-1
. . .

CSE 444 - Winter 2020 28January 29, 2020

Partitioned Hash-Join

§Cost: 3B(R) + 3B(S)
§Assumption: min(B(R), B(S)) <= M2

CSE 444 - Winter 2020 29January 29, 2020

Hybrid Hash Join Algorithm (see book)

§ Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

§ Partition R into k buckets
• First t buckets join immediately with S
• Rest k-t buckets go to disk

§ Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

CSE 444 - Winter 2020 30January 29, 2020

45January 29, 2020

Database System Internals

CSE 444 - Winter 2020

Query Plan Costs

Summary of External Join Algorithms

§Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

§ Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

§Partitioned Hash: 3B(R)+3B(S);
• min(B(R),B(S)) <= M2

§Merge Join: 3B(R)+3B(S)
• B(R)+B(S) <= M2

CSE 444 - Winter 2020 46January 29, 2020

CSE 444 - Winter 2020

Summary of Query Execution

§ For each logical query plan
• There exist many physical query plans
• Each plan has a different cost
• Cost depends on the data

§Additionally, for each query
• There exist several logical plans

§Next lecture: query optimization
• How to compute the cost of a complete plan?
• How to pick a good query plan for a query?

47January 29, 2020

A Note About Skew

§ Previously shown 2 pass join algorithms do not
work for heavily skewed data

§ For a sort-merge join, the maximum number of
tuples with a particular join attribute should be
the number of tuples per page:

• This often isn’t the case: would need multiple
passes

CSE 444 - Winter 2020
49January 29, 2020

Before We Go Into Query Plan
Costs… How do Updates Work?
(Insert/Delete)

CSE 444 - Winter 2020 50January 29, 2020

Example Using Delete

delete from R where a=1;

CSE 444 - Winter 2020 51

SeqScan

Filter (𝜎 a=1)

Delete

Query plan
In SimpleDB, the Delete Operator calls
BufferPool.deleteTuple()

Why not call HeapFile.deleteTuple() directly?

Because there could also be indexes.
Need some entity that will decide all the
structures from where tuple needs to be
deleted

BufferPool then calls HeapFile.deleteTuple()

R

January 29, 2020

Pushing Updates to Disk

§ When inserting a tuple, HeapFile inserts it on a page
but does not write the page to disk

§ When deleting a tuple, HeapFile deletes tuple from a
page but does not write the page to disk

§ The buffer manager worries when to write pages to
disk (and when to read them from disk)

§ When need to add new page to file, HeapFile adds
page to file on disk and then reads it through buffer
manager

CSE 444 - Winter 2020
52January 29, 2020

Back to Query Optimization

CSE 444 - Winter 2020 53January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

CSE 444 - Winter 2020 54

What is the cost of a plan?
For each operator, cost is function of CPU, IO, network bw

Total_Cost = CPUCost + wIO IOCost+ wBW BWCost
Cost of plan is total for all operators
In this class, we look only at IO

January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

CSE 444 - Winter 2020 55January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

CSE 444 - Winter 2020 56January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V

CSE 444 - Winter 2020 57January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
• Eg. Cost(V ⋈ T) = 3B(V) + 3B(T)
• B(V) = T(V) / PageSize
• T(V) = T(σ(R) ⋈ S)

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V

CSE 444 - Winter 2020 58January 29, 2020

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
• Eg. Cost(V ⋈ T) = 3B(V) + 3B(T)
• B(V) = T(V) / PageSize
• T(V) = T(σ(R) ⋈ S)

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V

CSE 444 - Winter 2020 59

Cardinality estimation problem: e.g. estimate T(σ(R) ⋈ S)

January 29, 2020

Database Statistics

§Collect statistical summaries of stored data

§Estimate size (=cardinality) in a bottom-up fashion
• This is the most difficult part, and still inadequate in

today’s query optimizers
§Estimate cost by using the estimated size

• Hand-written formulas, similar to those we used for
computing the cost of each physical operator

CSE 444 - Winter 2020 60January 29, 2020

Database Statistics

§Number of tuples (cardinality) T(R)
§ Indexes, number of keys in the index V(R,a)
§Number of physical pages B(R)
§Statistical information on attributes

• Min value, Max value, V(R,a)
§Histograms

§ Collection approach: periodic, using sampling

CSE 444 - Winter 2020 61January 29, 2020

Size Estimation Problem

CSE 444 - Winter 2020 62

Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)
Estimate T(Q)

How can we do this ? Note: doesn’t have to be exact.

January 29, 2020

Size Estimation Problem

CSE 444 - Winter 2020 63

Remark: T(Q) ≤ T(R1) × T(R2) × … × T(Rn)

Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

January 29, 2020

Size Estimation Problem

CSE 444 - Winter 2020 64

Remark: T(Q) ≤ T(R1) × T(R2) × … × T(Rn)

Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Key idea: each condition reduces the size
of T(Q) by some factor, called selectivity factor

January 29, 2020

Selectivity Factor

§ Each condition cond reduces the size by some
factor called selectivity factor

§Assuming independence, multiply the selectivity
factors

CSE 444 - Winter 2020 65January 29, 2020

Example

Q = SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

Q: What is the estimated size of the query output T(Q) ?

CSE 444 - Winter 2020 66January 29, 2020

Example

Q = SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

Q: What is the estimated size of the query output T(Q) ?

CSE 444 - Winter 2020 67

A: T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * ½ = 1012

January 29, 2020

Selectivity Factors for Conditions

§A = c /* σA=c(R) */
• Selectivity = 1/V(R,A)

CSE 444 - Winter 2020 68January 29, 2020

Selectivity Factors for Conditions
§A = c /* σA=c(R) */

• Selectivity = 1/V(R,A)

§A < c /* σA<c(R)*/
• Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))

CSE 444 - Winter 2020 69

Selectivity Factors for Conditions

January 29, 2020

Selectivity Factors for Conditions
§A = c /* σA=c(R) */

• Selectivity = 1/V(R,A)

§A < c /* σA<c(R)*/
• Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))

§A = B /* R ⨝A=B S */
• Selectivity = 1 / max(V(R,A),V(S,A))
• (will explain next)

CSE 444 - Winter 2020 70

Selectivity Factors for Conditions

January 29, 2020

Assumptions

§Containment of values: if V(R,A) <= V(S,B), then
all values R.A occur in S.B

• Note: this indeed holds when A is a foreign key in R,
and B is a key in S

§Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

• Note: we don’t need this to estimate the size of the
join, but we need it in estimating the next operator

CSE 444 - Winter 2020 71January 29, 2020

Selectivity of R ⨝A=B S

Assume V(R,A) <= V(S,B)

§A tuple t in R joins with T(S)/V(S,B) tuple(s) in S

§Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 444 - Winter 2020 72January 29, 2020

74

Complete Example

§ Some statistics
• T(Supplier) = 1000 records
• T(Supply) = 10,000 records
• B(Supplier) = 100 pages
• B(Supply) = 100 pages
• V(Supplier,scity) = 20, V(Suppliers,state) = 10
• V(Supply,pno) = 2,500
• Both relations are clustered

§ M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sno = y.sno

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

CSE 444 - Winter 2020

Supplier(sno, sname, scity, sstate)
Supply(sno, pno, quantity)

Suppy.sno references
Supplier.sno

January 29, 2020

CSE 444 - Winter 2020 76

Physical Query Plan 1

Supplier Supply

sno = sno

𝜎scity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

𝛑sname

(File scan) (File scan)

(Nested loop
memory optimized)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100 / (11-1)
= 1,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

January 29, 2020

CSE 444 - Winter 2020 77

Supplier Supply

sno = sno

(a) 𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(b) 𝜎pno=2

(Scan
write to T1)

Total cost
= 100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
+ 1 + 1 (c)
+ 0 (d)
Total cost ≈ 204 I/Os

(c)

(d)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

Physical Query Plan 2

January 29, 2020

CSE 444 - Winter 2020 78

Supplier Supply

sno = sno

(a) 𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(File scan) (File scan)

(Sort-merge join)

(Scan write to T2)
(b) 𝜎pno=2

(Scan
write to T1)

Plan 2 with Different Numbers

Total cost
= 10000 + 50 (a)
+ 10000 + 4 (b)
+ 3*50 + 4 (c)
+ 0 (d)
Total cost ≈ 20,208 I/Os

What if we had:
10K pages of Supplier
10K pages of Supply

Need to do a two-
pass sort algorithm

(c)

(d)

M = 11V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500
Suppy.sno references
Supplier.sno

January 29, 2020

79

Supply Supplier

sno = sno

𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(a) 𝜎pno=2

(Hash index on pno)
Assume: clustered

Physical Query Plan 3

Total cost
= 1 (a)
+ 4 (b)
+ 0 (c)
+ 0 (d)
Total cost ≈ 5 I/Os

(Use hash index)

(b)

(c)

(d)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

January 29, 2020 CSE 444 - Winter 2020

Remember: Suppy.sno references
Supplier.sno

Histograms

§Statistics on data maintained by the RDBMS
§Makes size estimation much more accurate

(hence, cost estimations are more accurate)

CSE 444 - Winter 2020 80January 29, 2020

Histograms

CSE 444 - Winter 2020 81

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

January 29, 2020

Histograms

CSE 444 - Winter 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 / 50 = 3000

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

82January 29, 2020

Histograms

CSE 444 - Winter 2020

Age: 0-20 20-29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

83January 29, 2020

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

84CSE 444 - Winter 2020January 29, 2020

Types of Histograms

§How should we determine the bucket boundaries
in a histogram?

CSE 444 - Winter 2020 85January 29, 2020

Types of Histograms

§How should we determine the bucket boundaries
in a histogram?

§ Eq-Width
§ Eq-Depth
§Compressed
§V-Optimal histograms

CSE 444 - Winter 2020 86January 29, 2020

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0-33 33-38 38-43 43-45 45-54 > 54

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

CSE 444 - Winter 2020 87January 29, 2020

V-Optimal Histograms

§Defines bucket boundaries in an optimal way, to
minimize the error over all point queries

§Computed rather expensively, using dynamic
programming

§Modern databases systems use V-optimal
histograms or some variations

CSE 444 - Winter 2020 88January 29, 2020

Difficult Questions on Histograms

§ Small number of buckets
• Hundreds, or thousands, but not more
• WHY ?

§Not updated during database update, but
recomputed periodically

• WHY ?
§Multidimensional histograms rarely used

• WHY ?

CSE 444 - Winter 2020 89January 29, 2020

Difficult Questions on Histograms

§ Small number of buckets
• Hundreds, or thousands, but not more
• WHY? All histograms are kept in main memory during

query optimization; plus need fast access
§Not updated during database update, but

recomputed periodically
• WHY? Histogram update creates a write conflict;

would dramatically slow down transaction throughput
§Multidimensional histograms rarely used

• WHY? Too many possible multidimensional histograms,
unclear which ones to choose

CSE 444 - Winter 2020 90January 29, 2020

