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Database System Internals

CSE 444 - Winter 2020

Join Algorithms (cont.)



Announcements

§ Lab 2 part 1 due Friday!
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Summary of External Join Algorithms

§Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

§ Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

§Merge Join: 3B(R)+3B(S)
• B(R)+B(S) <= M2

§Partitioned Hash Join: (coming up next)
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Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk
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Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k,   for all i
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Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k,   for all i

§Goal:  each Ri should fit in main memory: 
B(Ri) ≤ M
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Partitioned Hash Algorithms

§ Partition R it into k buckets:
R1, R2, R3, …, Rk

§Assuming B(R1)=B(R2)=…= B(Rk), we have
B(Ri) = B(R)/k,   for all i

§Goal:  each Ri should fit in main memory: 
B(Ri) ≤ M

How do we choose k?
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Partitioned Hash Algorithms

§ We choose k = M-1 Each bucket has size approx. 
B(R)/(M-1) ≈ B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Assumption:     B(R)/M ≤ M,   i.e. B(R) ≤ M2
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Partitioned Hash Algorithms
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Partitioned Hash Algorithms

• We choose k = M-1 Each bucket has size approx. 
B(R)/(M-1) ≈ B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
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M-1
. . .

1

2

B(R)

Assumption:     B(R)/M ≤ M,   i.e. B(R) ≤ M2

CSE 444 - Winter 2019 57

January 29, 2020



Partitioned Hash Join (Grace-Join)

R ⨝ S
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Note: partitioned hash-join 
is sometimes called

grace-join
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Partitioned Hash Join (Grace-Join)

R ⨝ S
§Step 1:

• Hash S into M-1 buckets
• Send all buckets to disk

§Step 2
• Hash R into M-1 buckets
• Send all buckets to disk

§Step 3
• Join every pair of buckets

CSE 444 - Winter 2020 11

Note: grace-join is
also called

partitioned hash-join
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Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3

3 0
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Partitioned Hash-Join Example
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Step 1: Read relation S one page at a time and hash into the 4 buckets
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5 2
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Step 1: Read relation S one page at a time and hash into the 4 buckets
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Disk
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Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1
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Disk
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Partitioned Hash-Join Example
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Step 1: Read relation S one page at a time and hash into the 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9
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Memory M = 5 pages
Hash h: value % 4
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Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

3

0

1

7

4

3
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Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk
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Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9
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Memory M = 5 pages
Hash h: value % 4
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0
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4
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Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

0

1

2

3 3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7
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Partitioned Hash-Join Example
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Step 2: Read relation R one page at a time and hash into same 4 buckets

4 1

5 2

R
3 0

S

1 7

8 6

3 4 4 3

2 5

Disk

7 9

12 14

2 3

5 11

9 8

11 9

12 1

5 7

11 9

1 7

Memory M = 5 pages
Hash h: value % 4

Input buffer

3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2
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3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer
1 2

Output buffer
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Partitioned Hash-Join Example
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3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer
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Partitioned Hash-Join Example
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3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer
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Partitioned Hash-Join Example
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3 7

4 4 8 12

1 5 9 5

2 6

1 9

11 3 7 11

14 2

3 7

0 4 8 12

1 5 9 9

2

1 5

3 11 7

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer

0 4
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3 11 7

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

Input buffer

4 8412

1 2
Output buffer
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Partitioned Hash-Join Example
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Partitioned Hash-Join

§ Partition both relations 
using hash fn h:  R tuples in 
partition i will only match S 
tuples in partition i.

B main memory buffers DiskDisk

Original Relation OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1

2

M-1
. . .
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Partitioned Hash-Join

§ Partition both relations 
using hash fn h:  R tuples in 
partition i will only match S 
tuples in partition i.

❖ Read in a partition of R, 
hash it using h2 (<> h!). 
Scan matching partition of 
S, search for matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si ( < M-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original Relation OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1

2

M-1
. . .
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Partitioned Hash-Join

§Cost: 3B(R) + 3B(S)
§Assumption: min(B(R), B(S)) <= M2
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Hybrid Hash Join Algorithm (see book)

§ Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

§ Partition R into k buckets
• First t buckets join immediately with S 
• Rest k-t buckets go to disk

§ Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)
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Database System Internals
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Summary of External Join Algorithms

§Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

§ Index Join: B(R) + T(R)B(S)/V(S,a)
(unclustered)

§Partitioned Hash: 3B(R)+3B(S);
• min(B(R),B(S)) <= M2

§Merge Join: 3B(R)+3B(S)
• B(R)+B(S) <= M2
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CSE 444 - Winter 2020

Summary of Query Execution

§ For each logical query plan
• There exist many physical query plans
• Each plan has a different cost
• Cost depends on the data

§Additionally, for each query
• There exist several logical plans

§Next lecture: query optimization
• How to compute the cost of a complete plan?
• How to pick a good query plan for a query?
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A Note About Skew

§ Previously shown 2 pass join algorithms do not 
work for heavily skewed data

§ For a sort-merge join, the maximum number of 
tuples with a particular join attribute should be 
the number of tuples per page:

• This often isn’t the case: would need multiple 
passes
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Before We Go Into Query Plan 
Costs… How do Updates Work?
(Insert/Delete)
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Example Using Delete

delete from R where a=1;
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SeqScan

Filter (𝜎 a=1)

Delete

Query plan
In SimpleDB, the Delete Operator calls 
BufferPool.deleteTuple()

Why not call HeapFile.deleteTuple() directly?

Because there could also be indexes.
Need some entity that will decide all the 
structures from where tuple needs to be 
deleted

BufferPool then calls HeapFile.deleteTuple()

R
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Pushing Updates to Disk

§ When inserting a tuple, HeapFile inserts it on a page 
but does not write the page to disk

§ When deleting a tuple, HeapFile deletes tuple from a 
page but does not write the page to disk

§ The buffer manager worries when to write pages to 
disk (and when to read them from disk)

§ When need to add new page to file, HeapFile adds 
page to file on disk and then reads it through buffer 
manager

CSE 444 - Winter 2020
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Back to Query Optimization
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Query Optimization Summary

Goal: find a physical plan that has minimal cost

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T
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What is the cost of a plan?
For each operator, cost is function of CPU, IO, network bw

Total_Cost = CPUCost + wIO IOCost+ wBW BWCost
Cost of plan is total for all operators
In this class, we look only at IO
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Query Optimization Summary

Goal: find a physical plan that has minimal cost
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Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

⋈

R

σ

⋈

S T

⋈

R

σ
⋈
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⋈
R

σ
⋈

S T

CSE 444 - Winter 2020 56January 29, 2020



Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

⋈

R
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⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V
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Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
• Eg. Cost(V ⋈ T) = 3B(V) + 3B(T)
• B(V)  = T(V) / PageSize
• T(V) = T(σ(R) ⋈ S)

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V
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Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
• Eg. Cost(V ⋈ T) = 3B(V) + 3B(T)
• B(V)  = T(V) / PageSize
• T(V) = T(σ(R) ⋈ S)

⋈

R

σ

⋈

S T

⋈

R

σ
⋈

S T

⋈
R

σ
⋈

S T

V
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Cardinality estimation problem: e.g. estimate T(σ(R) ⋈ S)
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Database Statistics

§Collect statistical summaries of stored data

§Estimate size (=cardinality) in a bottom-up fashion
• This is the most difficult part, and still inadequate in 

today’s query optimizers
§Estimate cost by using the estimated size

• Hand-written formulas, similar to those we used for 
computing the cost of each physical operator
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Database Statistics

§Number of tuples (cardinality) T(R)
§ Indexes, number of keys in the index V(R,a)
§Number of physical pages B(R)
§Statistical information on attributes

• Min value, Max value, V(R,a)
§Histograms

§ Collection approach: periodic, using sampling
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Size Estimation Problem
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Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)
Estimate T(Q)

How can we do this ?  Note: doesn’t have to be exact.
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Size Estimation Problem
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Remark: T(Q) ≤  T(R1) × T(R2) × … × T(Rn)

Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk
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Size Estimation Problem

CSE 444 - Winter 2020 64

Remark: T(Q) ≤  T(R1) × T(R2) × … × T(Rn)

Q = SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Key idea: each condition reduces the size
of T(Q) by some factor, called selectivity factor
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Selectivity Factor

§ Each condition cond reduces the size by some 
factor called selectivity factor

§Assuming independence, multiply the selectivity 
factors
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Example

Q = SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k,  T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B  is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

Q: What is the estimated size of the query output T(Q) ?
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Example

Q = SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k,  T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B  is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

Q: What is the estimated size of the query output T(Q) ?
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A: T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * ½ = 1012
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Selectivity Factors for Conditions

§A = c     /* σA=c(R) */
• Selectivity  = 1/V(R,A)
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Selectivity Factors for Conditions
§A = c     /* σA=c(R) */

• Selectivity  = 1/V(R,A)

§A < c      /* σA<c(R)*/
• Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))
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Selectivity Factors for Conditions
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Selectivity Factors for Conditions
§A = c     /* σA=c(R) */

• Selectivity  = 1/V(R,A)

§A < c      /* σA<c(R)*/
• Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))

§A = B                         /* R ⨝A=B S */
• Selectivity = 1 / max(V(R,A),V(S,A))
• (will explain next)
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Selectivity Factors for Conditions
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Assumptions

§Containment of values: if V(R,A) <= V(S,B), then 
all values R.A occur in S.B

• Note: this indeed holds when A is a foreign key in R, 
and B is a key in S

§Preservation of values: for any other attribute C, 
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C))

• Note: we don’t need this to estimate the size of the 
join, but we need it in estimating the next operator
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Selectivity of R ⨝A=B S

Assume V(R,A) <= V(S,B)

§A tuple t in R joins with T(S)/V(S,B) tuple(s) in S

§Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))
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74

Complete Example

§ Some statistics
• T(Supplier) = 1000 records
• T(Supply) = 10,000 records
• B(Supplier) = 100 pages
• B(Supply) = 100 pages
• V(Supplier,scity) = 20, V(Suppliers,state) = 10
• V(Supply,pno) = 2,500
• Both relations are clustered

§ M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sno = y.sno

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

CSE 444 - Winter 2020

Supplier(sno, sname, scity, sstate)
Supply(sno, pno, quantity)

Suppy.sno references
Supplier.sno
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Physical Query Plan 1

Supplier Supply

sno = sno

𝜎scity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

𝛑sname

(File scan) (File scan)

(Nested loop
memory optimized)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100 / (11-1)
= 1,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno
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Supplier Supply

sno = sno

(a) 𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(b) 𝜎pno=2

(Scan
write to T1)

Total cost
= 100 + 100 * 1/20 * 1/10   (a)
+ 100 + 100 * 1/2500         (b)
+ 1 + 1                      (c)                  
+ 0                                      (d)
Total cost ≈ 204 I/Os

(c)

(d)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

Physical Query Plan 2
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Supplier Supply

sno = sno

(a) 𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(File scan) (File scan)

(Sort-merge join)

(Scan write to T2)
(b) 𝜎pno=2

(Scan
write to T1)

Plan 2 with Different Numbers

Total cost
= 10000 + 50               (a)
+ 10000 + 4                 (b)
+ 3*50 + 4                    (c)
+ 0                                (d)
Total cost ≈ 20,208 I/Os

What if we had:
10K pages of Supplier
10K pages of Supply

Need to do a two-
pass sort algorithm

(c)

(d)

M = 11V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500
Suppy.sno references
Supplier.sno
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Supply Supplier

sno = sno

𝜎scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(a) 𝜎pno=2

(Hash index on pno )
Assume: clustered

Physical Query Plan 3

Total cost
= 1 (a)
+ 4 (b)
+ 0 (c)
+ 0 (d)
Total cost ≈ 5 I/Os

(Use hash index)

(b)

(c)

(d)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11
Suppy.sno references
Supplier.sno

January 29, 2020 CSE 444 - Winter 2020

Remember: Suppy.sno references
Supplier.sno



Histograms

§Statistics on data maintained by the RDBMS
§Makes size estimation much more accurate 

(hence, cost estimations are more accurate)
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Histograms
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Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50
min(age) = 19,  max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?
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Histograms
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Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50
min(age) = 19,  max(age) = 68

Estimate = 25000 / 50 = 500 Estimate = 25000  * 6 / 50 = 3000

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?
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Histograms
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Age: 0-20 20-29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50
min(age) = 19,  max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?
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Histograms

Employee(ssn, name, age)

T(Employee) = 25000,  V(Empolyee, age) = 50
min(age) = 19,  max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?
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Types of Histograms

§How should we determine the bucket boundaries 
in a histogram?
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Types of Histograms

§How should we determine the bucket boundaries 
in a histogram?

§ Eq-Width
§ Eq-Depth
§Compressed
§V-Optimal histograms
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Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0-33 33-38 38-43 43-45 45-54 > 54

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)
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V-Optimal Histograms

§Defines bucket boundaries in an optimal way, to 
minimize the error over all point queries

§Computed rather expensively, using dynamic 
programming

§Modern databases systems use V-optimal 
histograms or some variations
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Difficult Questions on Histograms

§ Small number of buckets
• Hundreds, or thousands, but not more
• WHY ?

§Not updated during database update, but 
recomputed periodically

• WHY ? 
§Multidimensional histograms rarely used

• WHY ?
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Difficult Questions on Histograms

§ Small number of buckets
• Hundreds, or thousands, but not more
• WHY? All histograms are kept in main memory during 

query optimization; plus need fast access
§Not updated during database update, but 

recomputed periodically
• WHY? Histogram update creates a write conflict; 

would dramatically slow down transaction throughput 
§Multidimensional histograms rarely used

• WHY? Too many possible multidimensional histograms, 
unclear which ones to choose
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