

1

4

Announcements

- Homework 2 released
- Due January $31{ }^{\text {st }}$
- 544 paper 1 report due Today
- Lab 2 posted after class
- Part 1 (operator algos) due Friday
- Part 2 (insert/delete support) due following Friday

5

3

6

7

10

8

11

Block Memory Refinement

9

12

13

19

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$
$-B(R)=$ size of R in blocks

- $T(R)=$ number of tuples in R
$-\mathrm{V}(\mathrm{R}, \mathrm{a})=$ \# of distinct values of attribute a

20

Index Based Selection
Selection on equality: $\sigma_{a=v}(R)$
$-B(R)=$ size of R in blocks
$-T(R)=$ number of tuples in R
$-V(R, a)=\#$ of distinct values of attribute a
What is the cost in each case?
- Clustered index on a:
- Unclustered index on a :

21

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$
$-B(R)=$ size of R in blocks

- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on $a: \quad B(R) / V(R, a)$
- Unclustered index on a:

22

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on $a: \quad B(R) / V(R, a)$
- Unclustered index on a: $\quad T(R) / V(R, a)$

24

25

28

26

27

Index Based Selection

- Example: | $\quad \begin{array}{l}B(R)=2000 \\ T(R)=100,000\end{array}$ |
| :--- |
| $(R)=20$ |

cost of $\sigma_{\mathrm{e}=-(\mathrm{R})}=$?
$\mathrm{V}(\mathrm{R}, \mathrm{a})=20$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{l} / \mathrm{Os}$

29

30

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cos - $B(R)+T(R) * B(S)$
- Index Nested Loop Join Cost:
- If index on S is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index on S is unclustered: $B(R)+T(R) T(S) / V(S, a)$

33

Index Based Selection		
- Example: - Table scan - Index bas - If index is - If index	$B(R)=2000$ $T(R)=100,000$ $V(R, a)=20$ $B(R)=2,00$ d selection: clustered: $B(R)$ unclustered:	os. a) $=100 \mathrm{I} / \mathrm{O}$ $(R, a)=5,000 \mathrm{I} / \mathrm{O}$
Lesson: Don't build unclustered indexes when V(R,a) is small		

31

Outline
 - Join operator algorithms
 - One-pass algorithms (Sec. 15.2 and 15.3)
 - Index-based algorithms (Sec 15.6)
 - Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

- Fastest algorithm seen so far is one-pass hash join What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
- Sorting
- Hashing
Index Based Selection

cost of $\mathrm{\sigma}_{\mathrm{s}=}(\mathrm{R})=$? $T(R)=100,000$

- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$ - If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

$$
\text { Lesson: Don't build unclustered indexes when } \mathrm{V}(\mathrm{R}, \mathrm{a}) \text { is small ! }
$$

32

36

37

43

External Merge-Sort: Step 1
Phase one: load M blocks in memory, sort, send to tisk, repeat
41

46

49

Example

- Merging three runs to produce a longer run:
$0, \mathbf{1 4 , 3 3 , 8 8 , 9 2 , 1 9 2 , 3 2 2}$
$2,4,7,43, \mathbf{7 8 , 1 0 3 , 5 2 3}$
$1,6,9,12, \mathbf{3 3}, \mathbf{5 2 , 8 8}, \mathbf{3 2 0}$
Output: 4, 6, 7, ?
$\mathbf{0 , 1 , 2 , 4 , 6}$

47

50

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0, 1,?
- Assumption: $B(R)<=M^{2}$
- Read+write+read $=3 B(R)$

51

Discussion
- What does $B(R)<=M^{2}$ mean?
- How large can R be?

52

Merge-Join
Join R®S
- How? \ldots.

55

Discussion
- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size $32 \mathrm{~GB}: M=10^{6}$.pages

53

Discussion

- What does $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size $32 \mathrm{~GB}: M=10^{6}$ pages
- R can be as large as 10^{12} pages - 32×10^{15} Bytes $=32 \mathrm{~PB}$

54

Merge-Join
Join $R \bowtie S$
- Step 1a: generate initial runs for R
- Step 1b: generate initial runs for S
- Step 2: merge and join
- ither merge first and then join
- Or merge \& join at the same time

56

Merge-Join Example

Setup: Want to join R and S
Relation R has 10 pages with 2 tuples per page
Relation R has 10 pages with 2 tuples per page
Relation S has 8 pages with 2 tuples per page
Values shown are values of join attribute for each given tuple
Natues show

57

65

68

66

70

67

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$

72

75
Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$
- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have
$B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory:
$B\left(R_{i}\right) \leq M$

73

Partitioned Hash Algorithms

- We choose $k=M-1$ Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

76

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$
- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

How do we choose k ?

74

77

78

Partitioned Hash-Join Example
Step 1: Read relation S one page at a time and hash into the 4 buckets

80

82

81

Partitioned Hash-Join Example
Step 1: Read relation Sone page at a time and hash into the 4 buckets

Memory $M=5$ pages
Hash h value $\% 4$
Hash h : value \% 4

| $\left.4\right\|^{3}$ |
| :--- | :--- | :--- |
| Input buffer |

$0.0 \square$
$1 \square$
$2 \square$
$3 \square$
$3 \square$

83

90

93

91

92

Hybrid Hash Join Algorithm

- Partition S into kuckets

\dagger buckets $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{t}}$ stay in memory k-t buckets S_{t+1}, \ldots, S_{k} to disk

- Partition R into k buckets
- First t buckets join immediately with S

Rest k-t buckets go to disk
Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- Index Join: $B(R)+T(R) B(S) / V(S, a)$ (unclustered)
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$
- Partitioned Hash: 3B(R)+3B(S);
- $\min (B(R), B(S))<=M^{2}$
- Merge Join: 3B(R)+3B(S)
- $B(R)+B(S)<=M^{2}$

109

Summary of Query Execution
 - For each logical query plan - There exist many physical query plans - Each plan has a different cost
 - Cost depends on the data
 - Additionally, for each query
 - There exist several logical plans
 - Next lecture: query optimization
 - How to compute the cost of a complete plan?
 - How to pick a good query plan for a query?

