

Database System Internals Operator Algorithms (part 2)

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

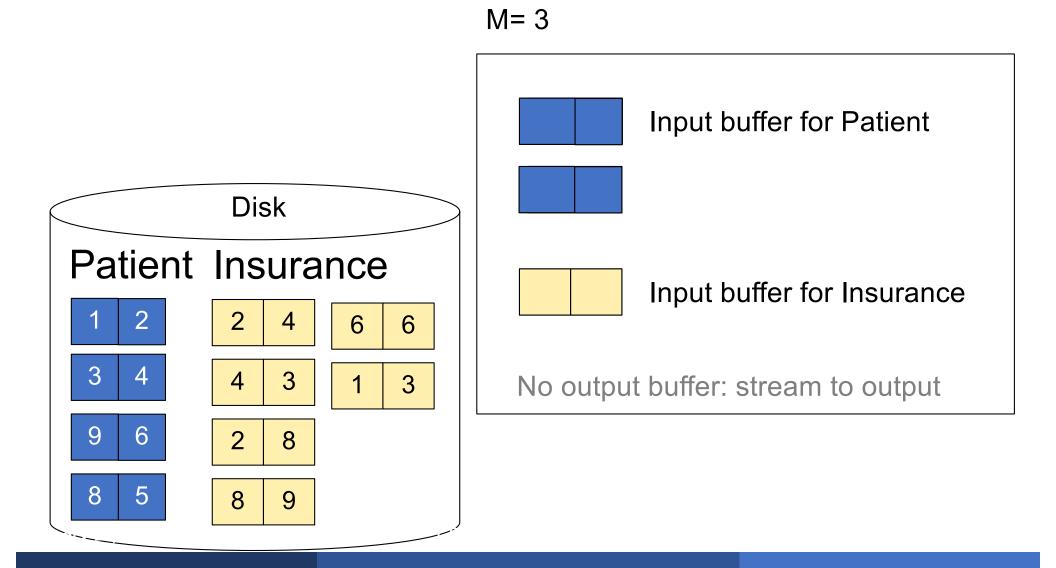
January 27, 2020

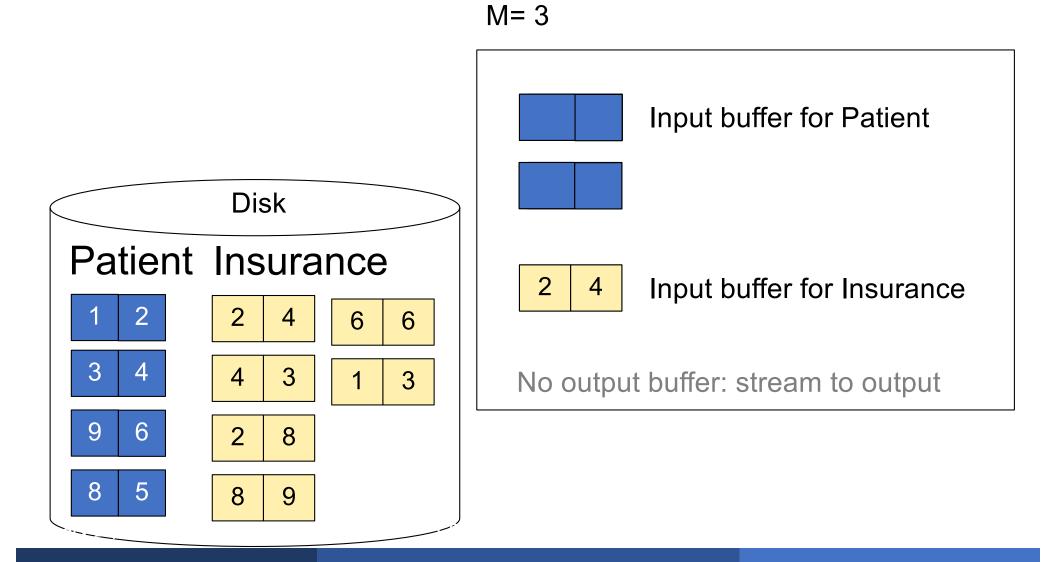
CSE 444 - Winter 2020

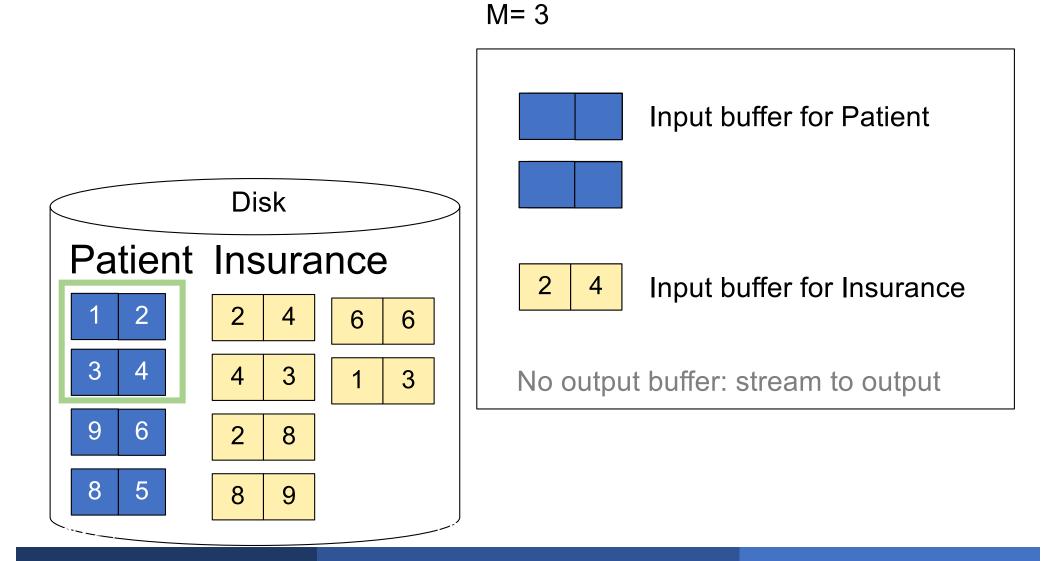
- Homework 2 released
 - Due January 31st
- 544 paper 1 report due Today
- Lab 2 posted after class
 - Part 1 (operator algos) due Friday
 - Part 2 (insert/delete support) due following Friday

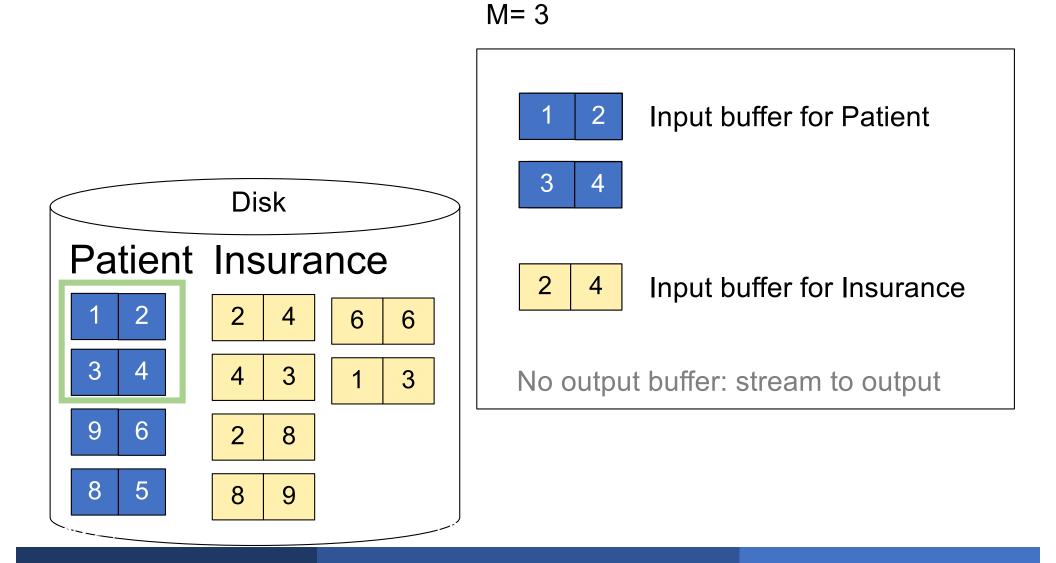
 $\begin{array}{l} \label{eq:for} \mbox{for each group of M-1 pages r in R } \underline{do} \\ \mbox{for each page of tuples s in S } \underline{do} \\ \mbox{for all pairs of tuples } t_1 \mbox{ in r, } t_2 \mbox{ in s} \\ \mbox{if } t_1 \mbox{ and } t_2 \mbox{ join } \underline{then} \mbox{ output } (t_1,t_2) \end{array}$

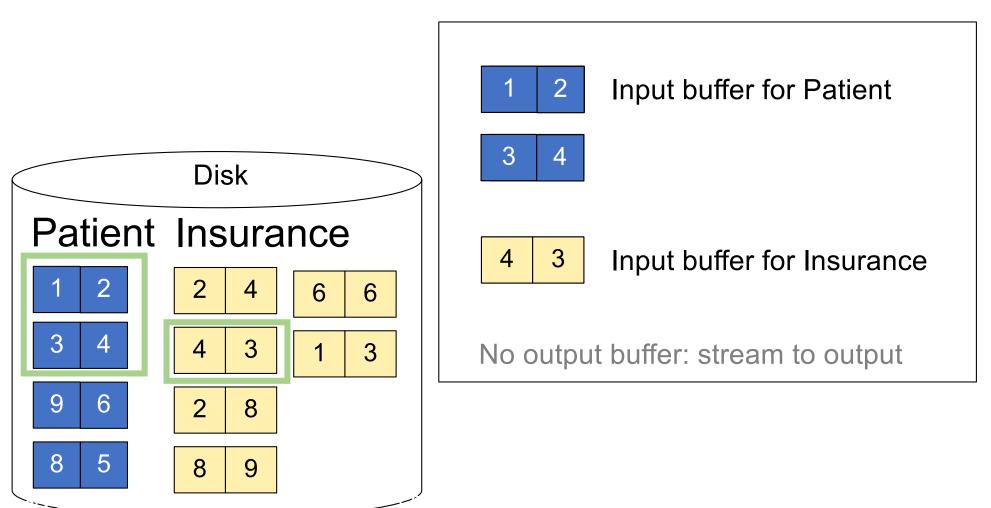
What is the Cost?



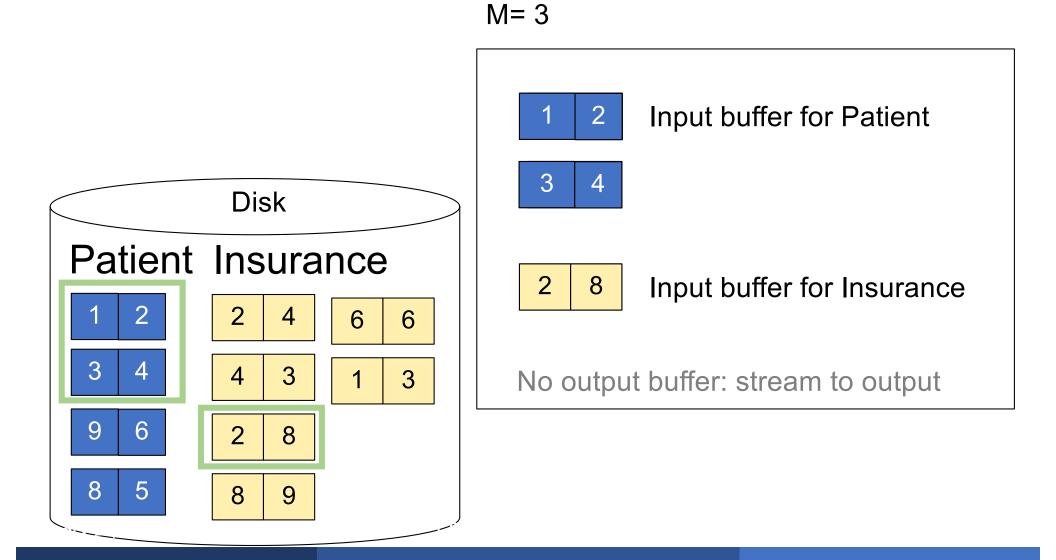


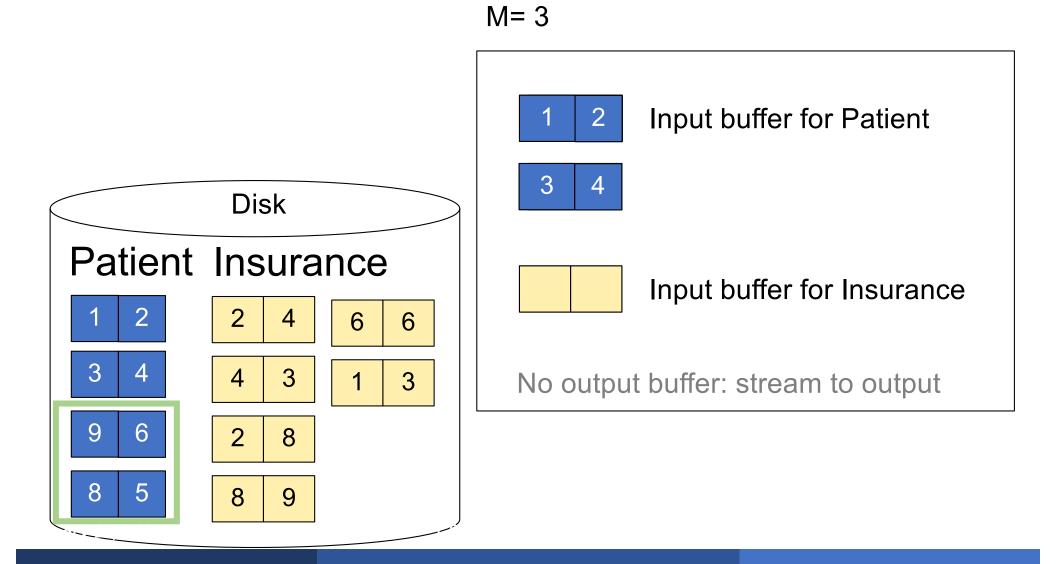


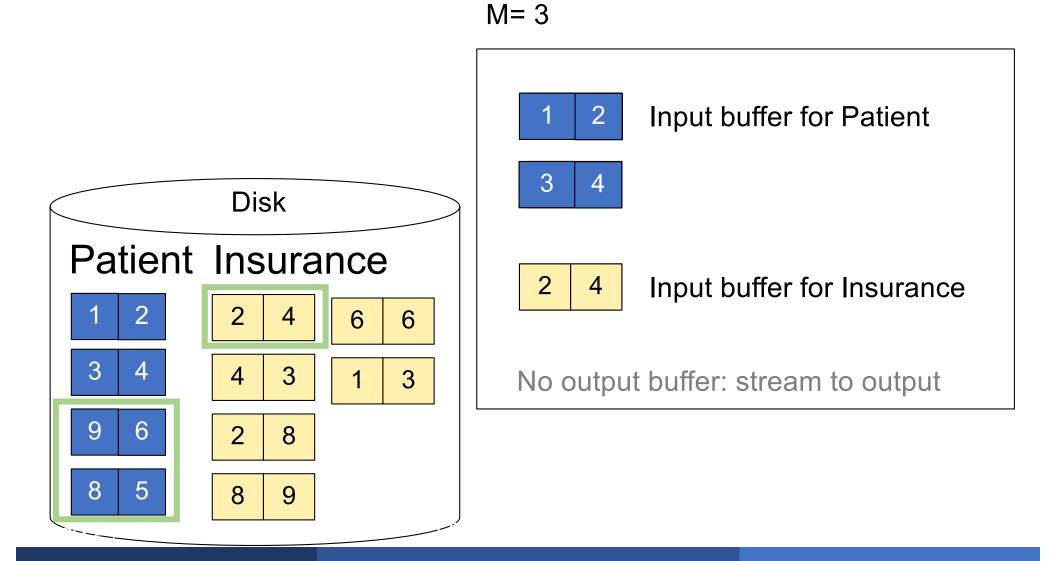




M= 3







 $\begin{array}{l} \label{eq:for} \mbox{for each group of M-1 pages r in R } \underline{do} \\ \mbox{for each page of tuples s in S } \underline{do} \\ \mbox{for all pairs of tuples } t_1 \mbox{ in r, } t_2 \mbox{ in s} \\ \mbox{if } t_1 \mbox{ and } t_2 \mbox{ join } \underline{then} \mbox{ output } (t_1,t_2) \end{array}$

What is the Cost?

 $\begin{array}{l} \mbox{for each group of M-1 pages r in R do} \\ \mbox{for each page of tuples s in S do} \\ \mbox{for all pairs of tuples } t_1 \mbox{ in r, } t_2 \mbox{ in s} \\ \mbox{if } t_1 \mbox{ and } t_2 \mbox{ join } \underline{\mbox{then}} \mbox{ output } (t_1,t_2) \end{array}$

Cost: B(R) + B(R)B(S)/(M-1)

What is the Cost?

Outline

Join operator algorithms

- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Selection on equality: $\sigma_{a=v}(R)$

- B(R) = size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

Selection on equality: $\sigma_{a=v}(R)$

- B(R) = size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a:
- Unclustered index on a:

Selection on equality: $\sigma_{a=v}(R)$

- B(R) = size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: B(R)/V(R,a)
- Unclustered index on a:

Selection on equality: $\sigma_{a=v}(R)$

- B(R) = size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: B(R)/V(R,a)
- Unclustered index on a: T(R)/V(R,a)

B(R)/V(R,a) T(R)/V(R,a)

Selection on equality: $\sigma_{a=v}(R)$

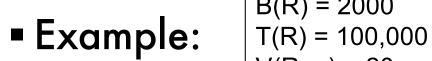
- B(R) = size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: B(R)/V(R,a)
- Unclustered index on a: T(R)/V(R,a)

B(R)/V(R,a) T(R)/V(R,a)

Note: we ignore I/O cost for index pages



B(R) = 2000V(R, a) = 20

- Table scan:
- Index based selection:

Table scan: B(R) = 2,000 I/Os

Index based selection:

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered:
 - If index is unclustered:

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered:

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

B(R) = 2000 T(R) = 100,000 V(R, a) = 20

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

B(R) = 2000 T(R) = 100,000 V(R, a) = 20

cost of $\sigma_{a=v}(R) = ?$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: $T(R)/V(R,a) = 5,000 I/O_{s}$

Lesson: Don't build unclustered indexes when V(R,a) is small !

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson: Don't build unclustered indexes when V(R,a) is small !

Index Nested Loop Join

R ⋈ S

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cost
 - B(R) + T(R) * B(S)
- Index Nested Loop Join Cost:
 - If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

Outline

Join operator algorithms

- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

- Fastest algorithm seen so far is one-pass hash join What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
 - Sorting
 - Hashing

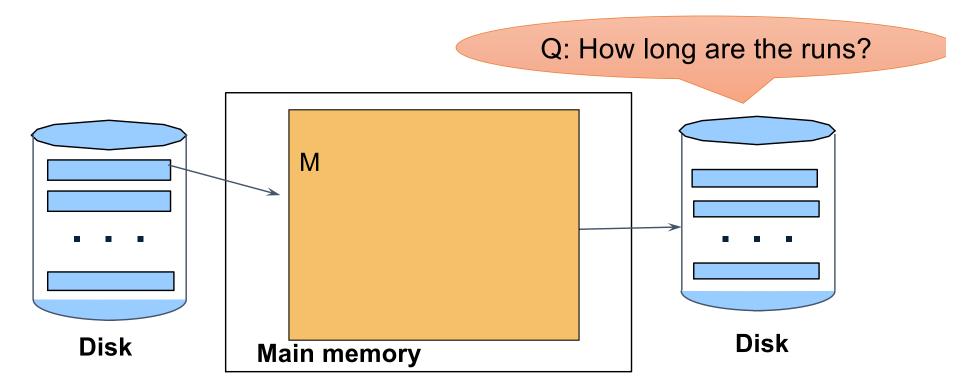
- A run in a sequence is an increasing subsequence
- What are the runs?
 - 2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50

- A run in a sequence is an increasing subsequence
- What are the runs?
 - 2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50

Phase one: load M blocks in memory, sort, send to disk, repeat

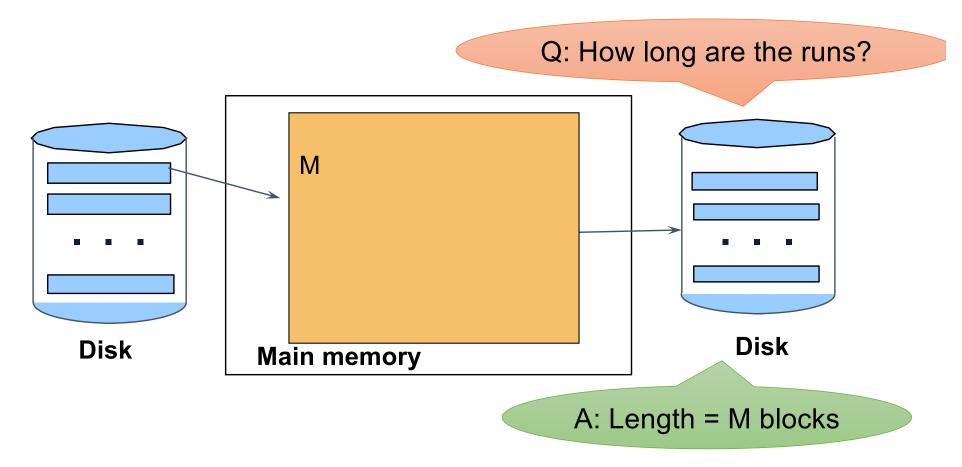
External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat



External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat



Phase two: merge M runs into a bigger run

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²



0, 14, 33, 88, 92, 192, 322 2, 4, 7, 43, 78, 103, 523 1, 6, 9, 12, 33, 52, 88, 320

Output:

0, 14, 33, 88, 92, 192, 322 2, 4, 7, 43, 78, 103, 523 1, 6, 9, 12, 33, 52, 88, 320

Output: **0, ?**

0, 14, 33, 88, 92, 192, 322 2, 4, 7, 43, 78, 103, 523 1, 6, 9, 12, 33, 52, 88, 320

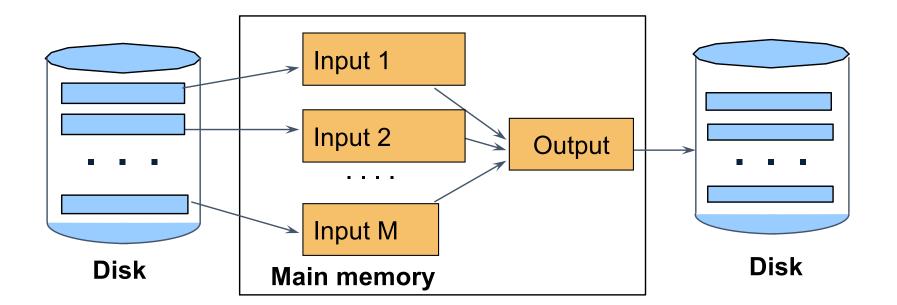
Output: **0, 1, ?**

0, **14**, 33, 88, 92, 192, 322 2, 4, 7, **43**, 78, 103, 523 1, 6, **9**, 12, 33, 52, 88, 320

Output: **0**, **1**, **2**, **4**, **6**, **7**, **?**

Phase two: merge M runs into a bigger run

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²



If approx. B $\leq M^2$ then we are done

CSE 444 - Winter 2020

Cost of External Merge Sort

Assumption: B(R) <= M²

Read+write+read = 3B(R)

Discussion

- What does B(R) <= M² mean?
- How large can R be?

Discussion

- What does B(R) <= M² mean?
- How large can R be?
- Example:
 - Page size = 32KB
 - Memory size 32GB: M = 10⁶-pages

Discussion

- What does B(R) <= M² mean?
- How large can R be?
- Example:
 - Page size = 32KB
 - Memory size 32GB: $M = 10^6$ pages
- R can be as large as 10¹² pages
 - 32×10^{15} Bytes = 32 PB

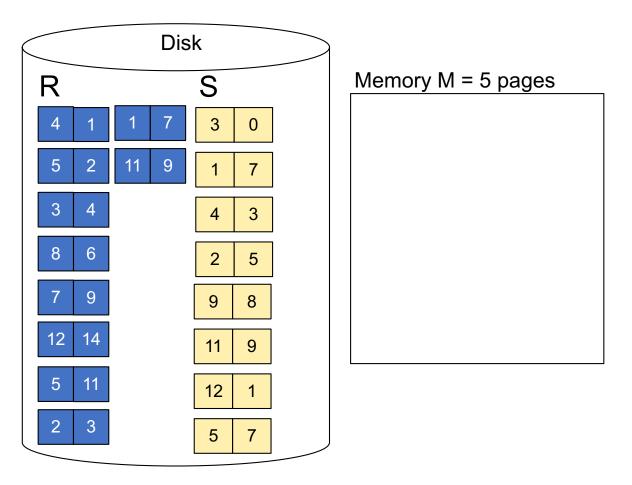
Merge-Join

Join R ⋈ S ■ How?.... Join R 🖂 S

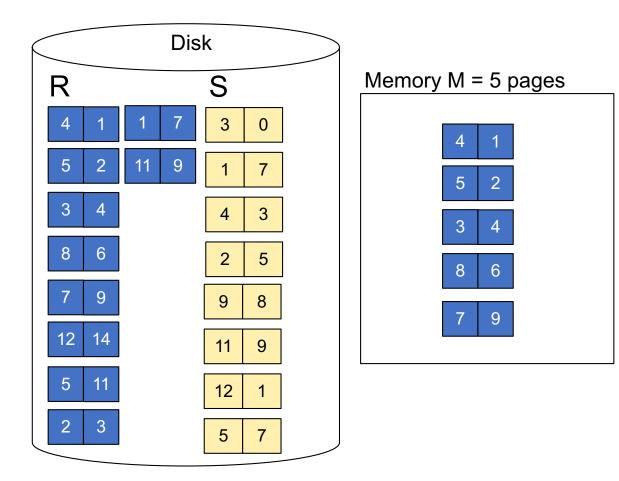
- Step 1a: generate initial runs for R
- Step 1b: generate initial runs for S
- Step 2: merge and join
 - Either merge first and then join
 - Or merge & join at the same time

Setup: Want to join R and S

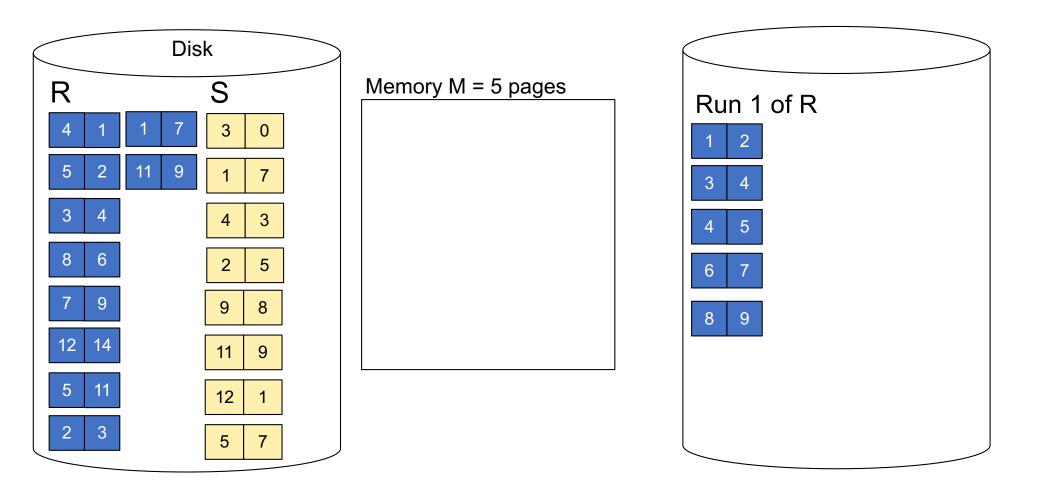
Relation R has 10 pages with 2 tuples per page Relation S has 8 pages with 2 tuples per page Values shown are values of join attribute for each given tuple



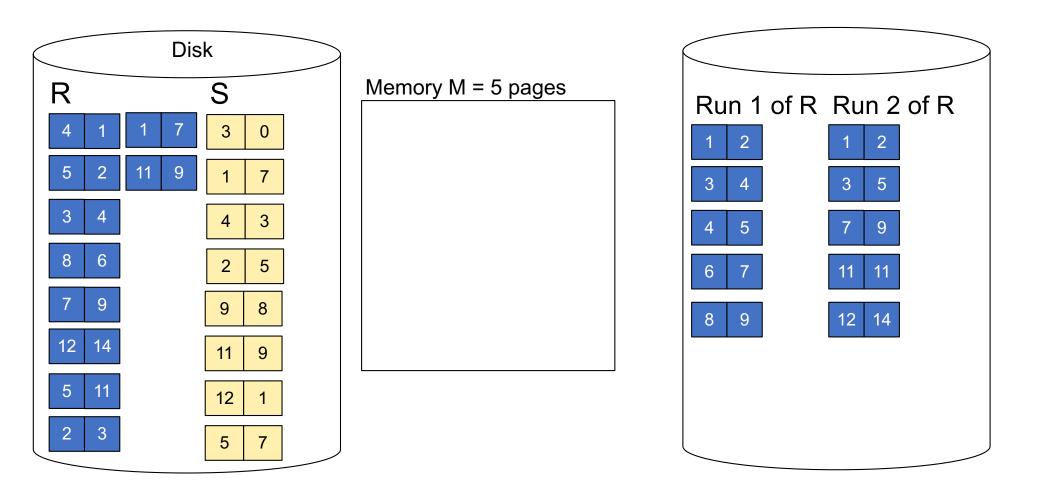
Step 1: Read M pages of R and sort in memory



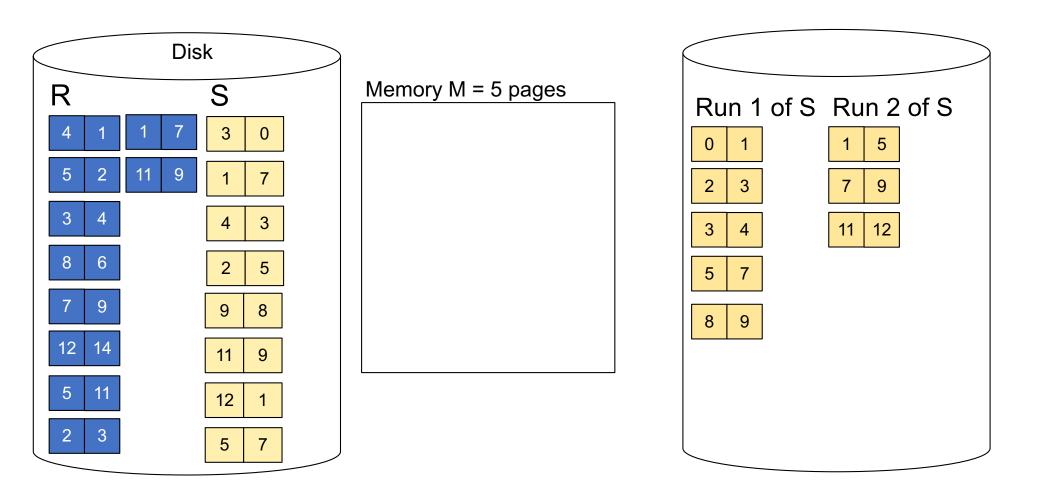
Step 1: Read M pages of R and sort in memory, then write to disk



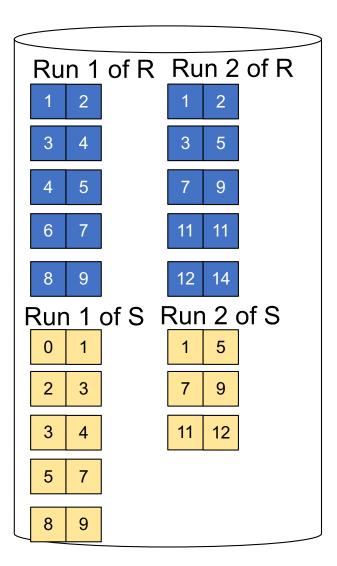
Step 1: Repeat for next M pages until all R is processed

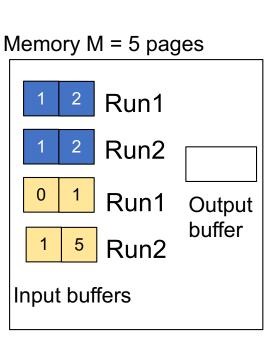


Step 1: Do the same with S



Step 2: Join while merging sorted runs

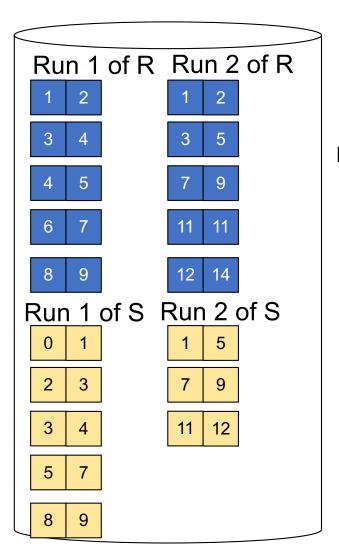


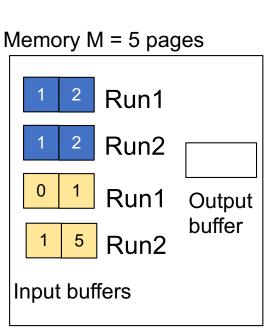


Total cost: 3B(R) + 3B(S)

Step 2: Join while merging Output tuples

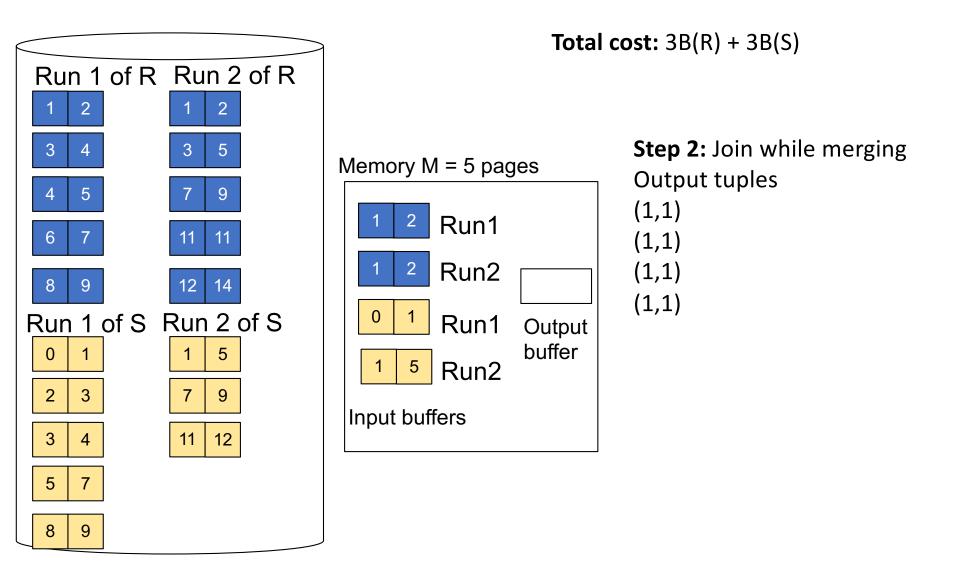
Step 2: Join while merging sorted runs

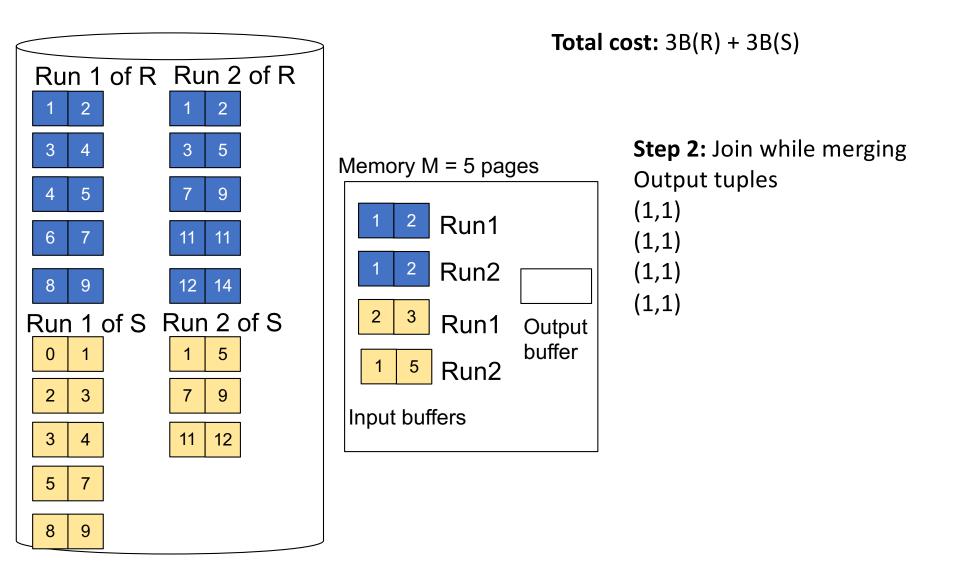


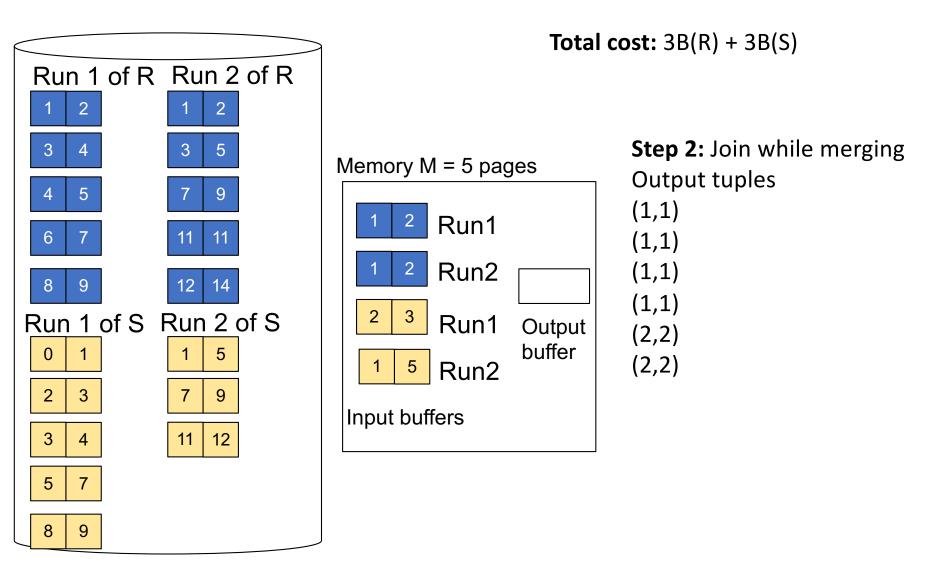


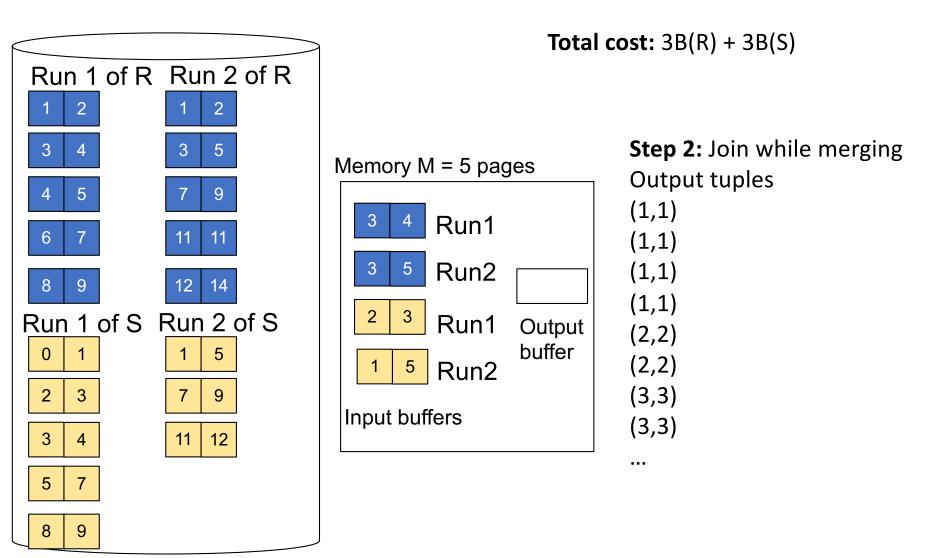
Total cost: 3B(R) + 3B(S)

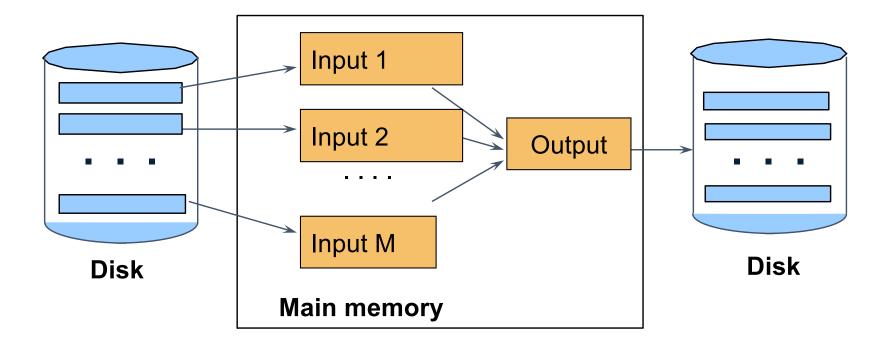
Step 2: Join while merging Output tuples











 $\begin{array}{l} M_1 = B(R)/M \text{ runs for } R \\ M_2 = B(S)/M \text{ runs for } S \\ \text{Merge-join } M_1 + M_2 \text{ runs;} \\ \text{need } M_1 + M_2 <= M \text{ to process all runs} \\ \text{ i.e. } B(R) + B(S) <= M^2 \end{array}$

• Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i

• Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i

Goal: each R_i should fit in main memory:
 B(R_i) ≤ M

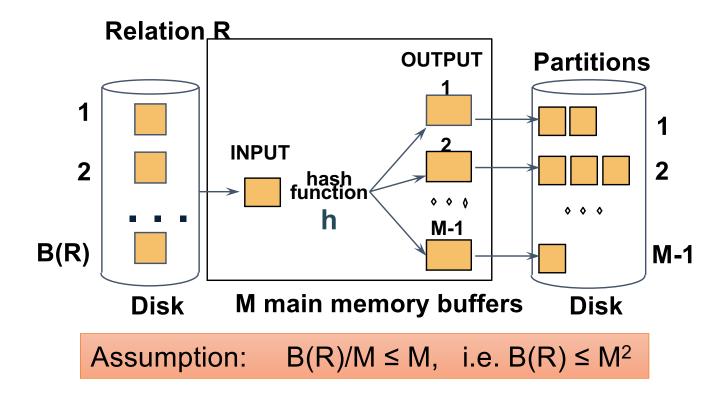
• Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i

Goal: each R_i should fit in main memory:
 B(R_i) ≤ M

How do we choose k?

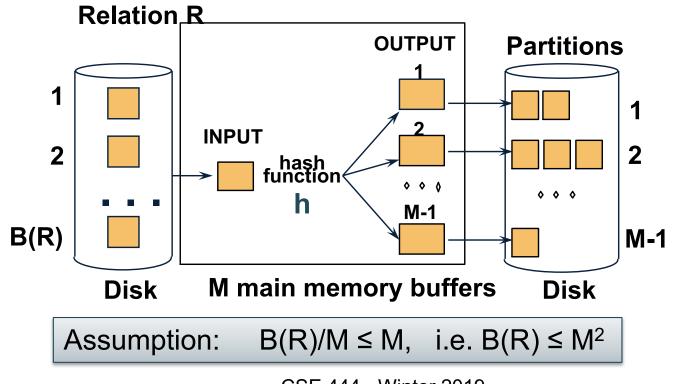
Partitioned Hash Algorithms

 We choose k = M-1 Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M



Partitioned Hash Algorithms

 We choose k = M-1 Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M



Grace-Join

$\mathsf{R}\bowtie\mathsf{S}$

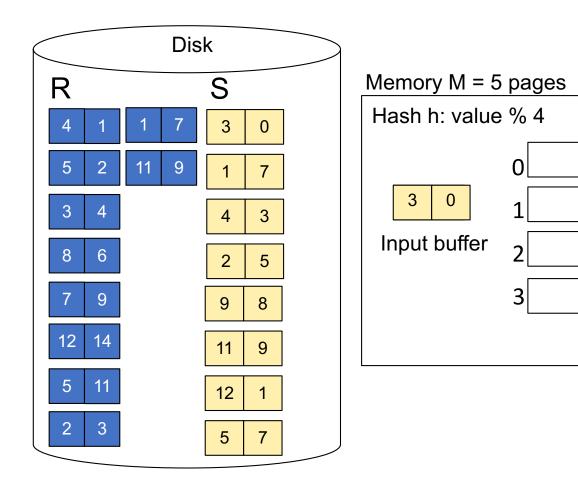
Note: grace-join is also called <u>partitioned hash-join</u>

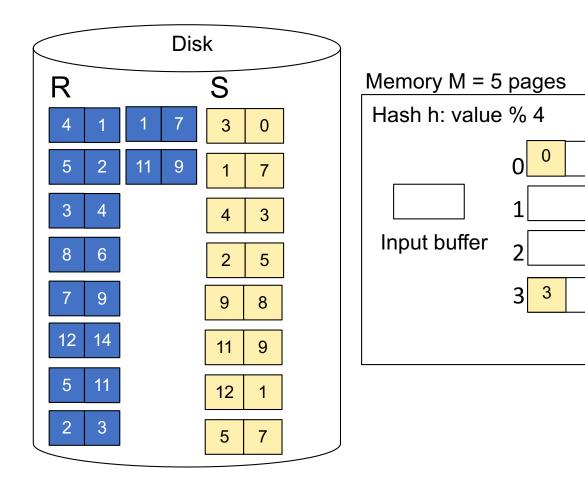
Grace-Join

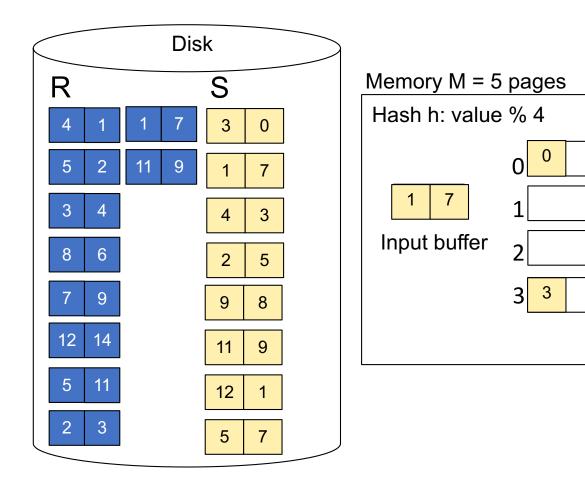
 $\mathsf{R}\bowtie\mathsf{S}$

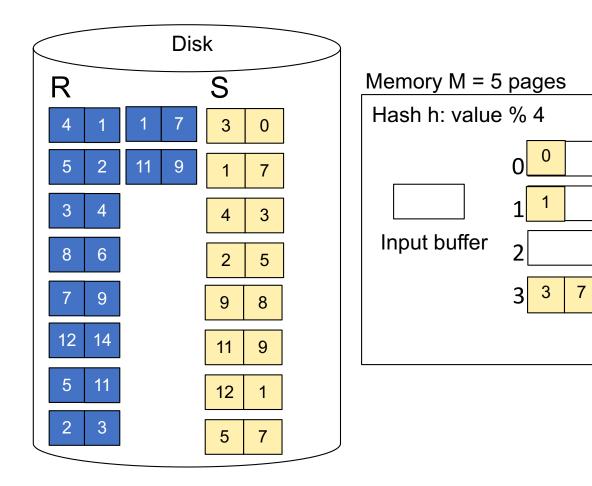
- Step 1:
 - Hash S into M-1 buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M-1 buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

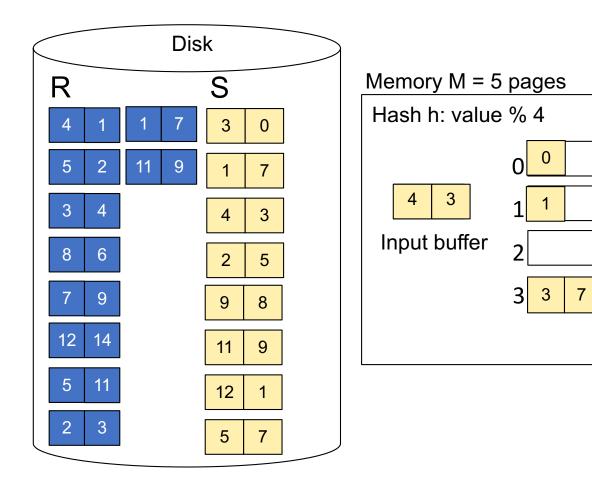
Note: grace-join is also called <u>partitioned hash-join</u>

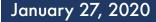




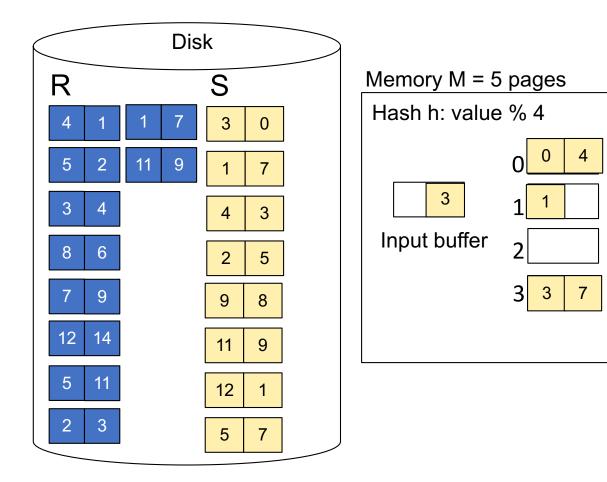




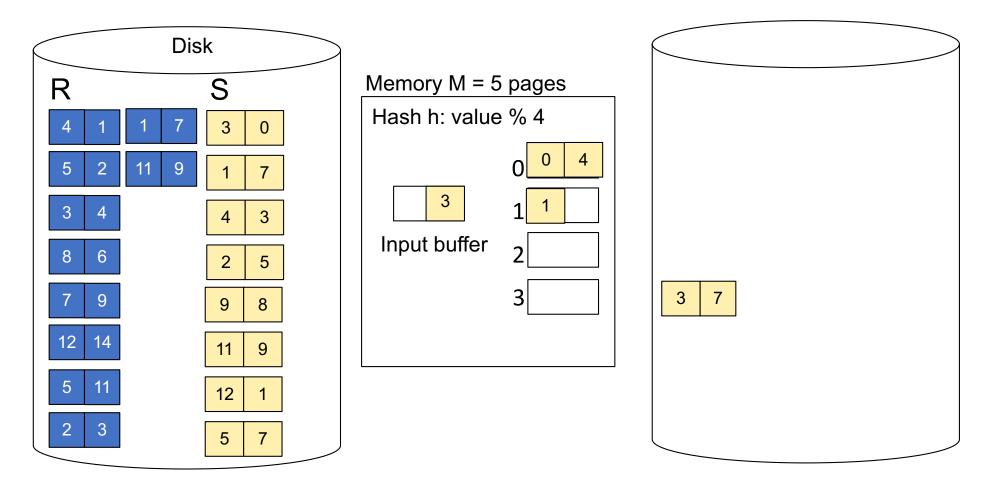




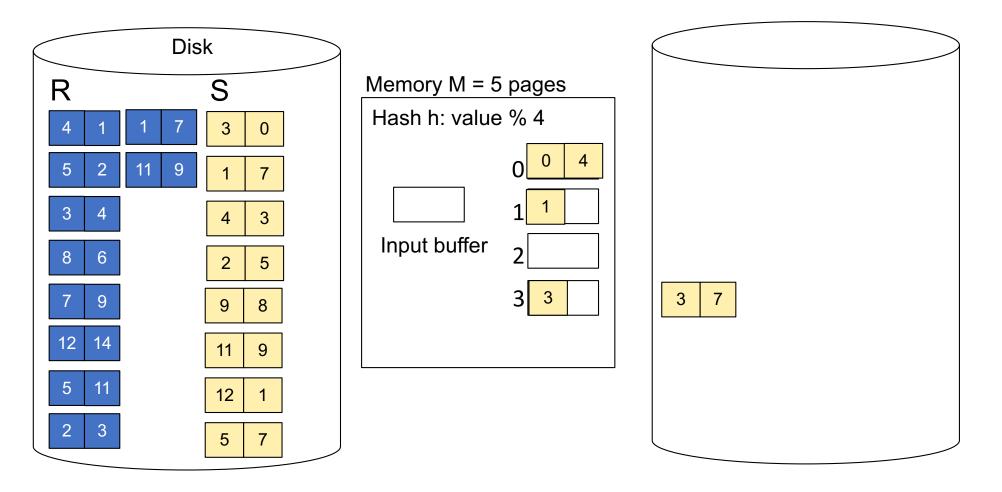
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



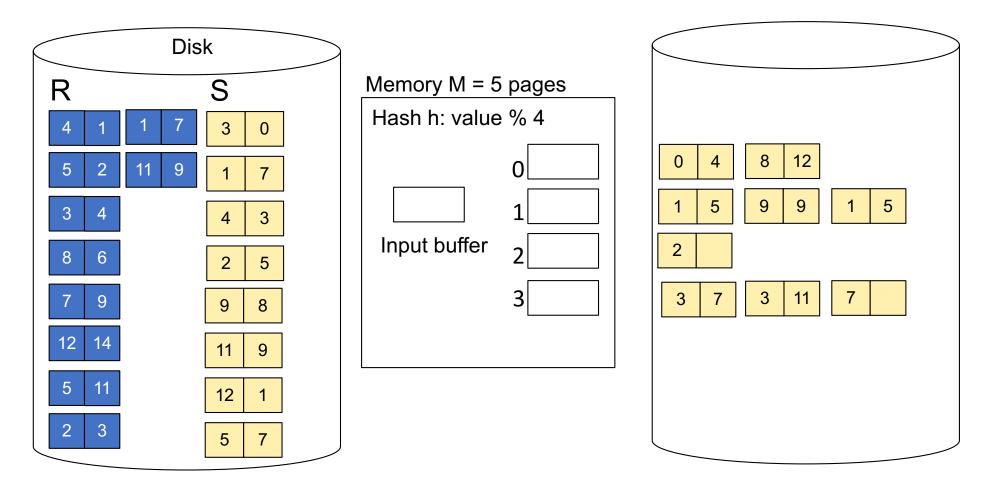
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



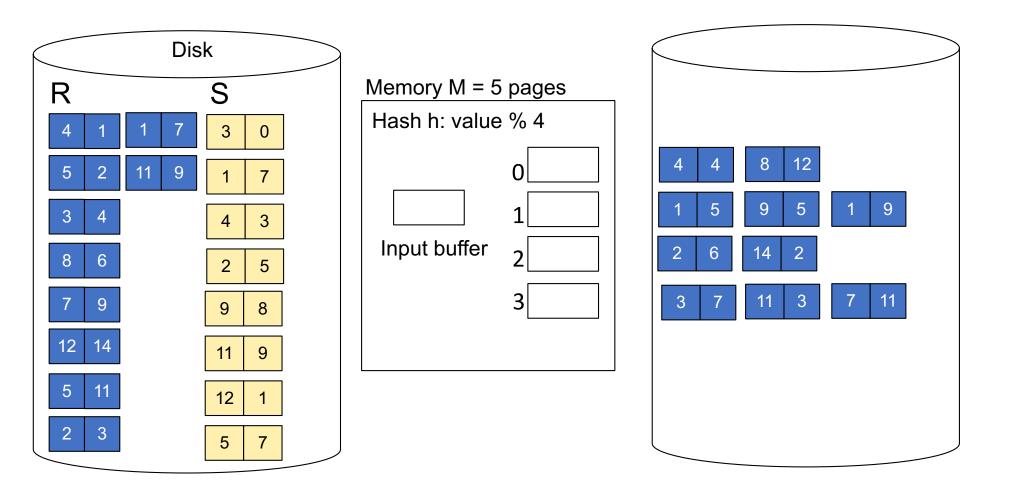
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



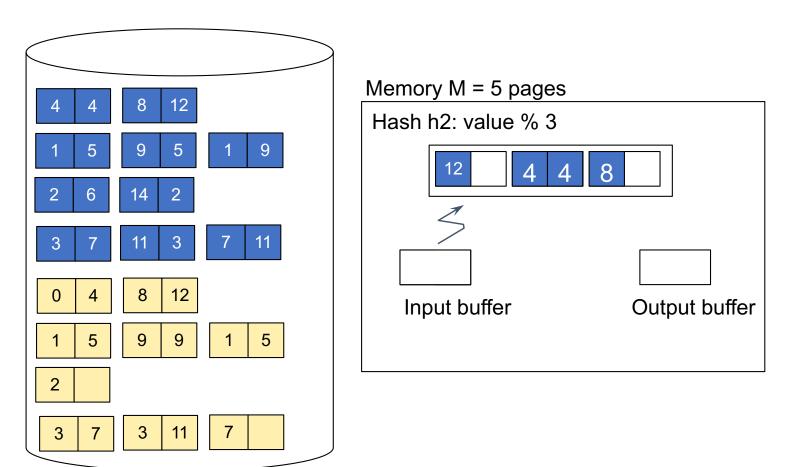
Step 1: Read relation S one page at a time and hash into the 4 buckets At the end, we get relation S back on disk split into 4 buckets



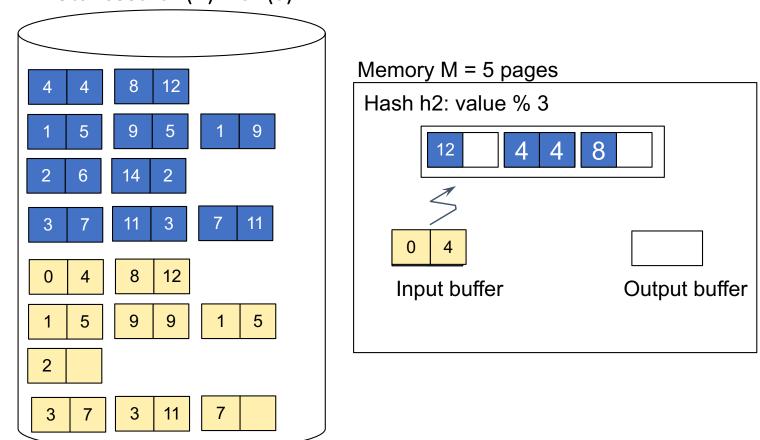
Step 2: Read relation R one page at a time and hash into same 4 buckets



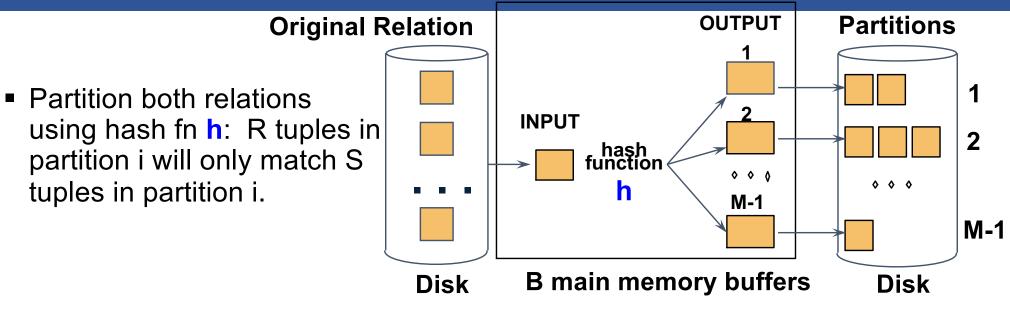
Step 3: Read one partition of R and create hash table in memory using a *different* hash function



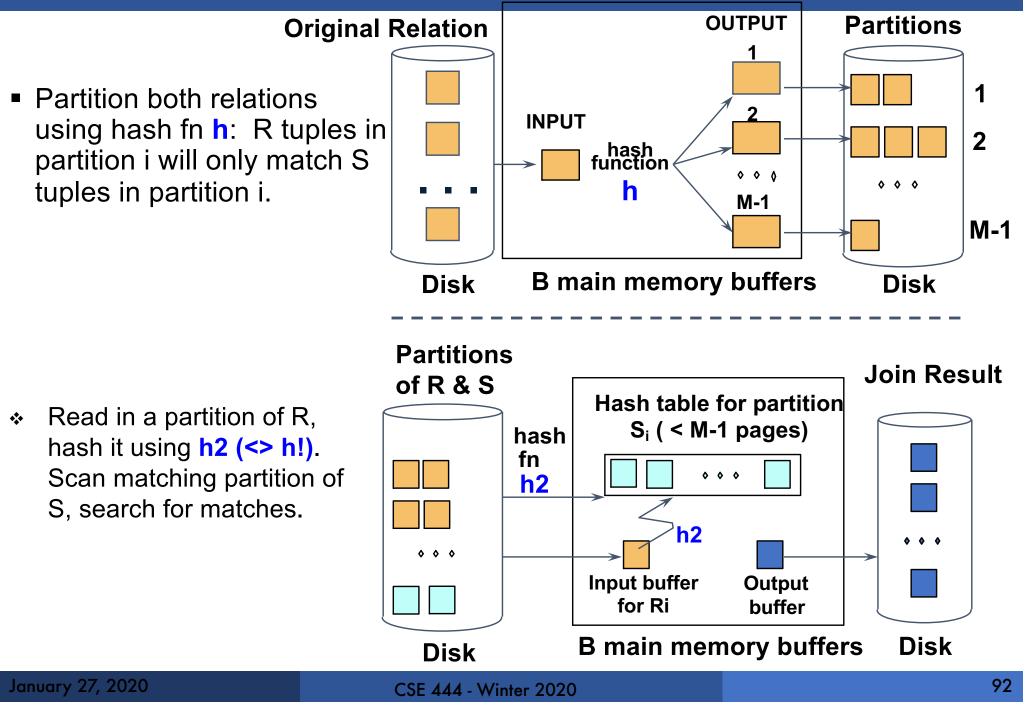
Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)



Grace-Join



Grace-Join



Grace Join

- Cost: 3B(R) + 3B(S)
- Assumption: min(B(R), B(S)) <= M²

Hybrid Hash Join Algorithm

- Partition S into k buckets

 t buckets S₁, ..., S_t stay in memory
 k-t buckets S_{t+1}, ..., S_k to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest k-t buckets go to disk

Finally, join k-t pairs of buckets: (R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), ..., (R_k, S_k)

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- Index Join: B(R) + T(R)B(S)/V(S,a) (unclustered)
- Partitioned Hash: 3B(R)+3B(S);
 min(B(R),B(S)) <= M²
- Merge Join: 3B(R)+3B(S)
 - B(R)+B(S) <= M²

Summary of Query Execution

- For each logical query plan
 - There exist many physical query plans
 - Each plan has a different cost
 - Cost depends on the data
- Additionally, for each query
 - There exist several logical plans
- Next lecture: query optimization
 - How to compute the cost of a complete plan?
 - How to pick a good query plan for a query?