
CSE	444:	Database	Internals

Section	2:	Indexing



Reminders

• Lab	1	Done!
• Lab	2	will	be	released	today!

– Will	need	to	run	`git pull	upstream	lab2`	to	get	new	files

• Homework	2	due	next	Friday

• Today,	we	will	go	through	indexing	examples	
together



Indexing

• Another	file	storing	index	attribute(s)	and	
pointers	(aka	RecordID)	or	actual	records
– Typically	smaller	than	the	data	file

• Motivation
– Fast	access	to	data	(less	disk	I/O)



Consider	the	following	database	schema:

Field	Name Data	Type Size	on	disk
Id (primary	key) Unsigned	INT 4	bytes
firstName Char(50) 50	bytes
lastName Char(50) 50	bytes
emailAddress Char(100) 100	bytes

Motivating	Scenario



Total	records	in	the	database	=	5,000,000
Length	of	each	record	=	4+50+50+100	=	204	bytes

Let	the	default	block	size	be	1,024	bytes

How	many	disk	blocks	are	needed	to	store	this	
data	set?

Motivating	Scenario

We	will	have	1024/204	=	5	records	per	disk	block
No.	of	blocks	needed	for	the	entire	table	=	5000000/5	=	1,000,000	blocks



Suppose	you	want	to	find	the	person	with	a	
particular	id (say	5000)
Assume	data	file	sorted	on	primary	key

What	is	the	best	way	to	do	so?

Motivating	Scenario



Linear	Search
No.	of	block	accesses	=	1000000/2	

=	500,000	on	avg

Binary	Search
No.	of	block	accesses	=	log2 1000000	=	19.93	=	20

Motivating	Scenario



Now,	suppose	you	want	to	find	the	person	having	
firstName =	‘John’

Here,	the	column	isn’t	sorted	and	does	not	hold	an	
unique	value.

What	is	the	best	way	to	do	search	for	the	records?

Motivating	Scenario



Solution:	Create	an	index	on	the	firstName
column

The	schema	for	an	index	on	firstName is:
Field	Name Data	Type Size	on	disk
firstName Char(50) 50	bytes
(record	pointer) Special 4	bytes

Motivating	Scenario



Total	records	in	the	database	=	5,000,000
Length	of	each	index	record	=	4+50	=	54	bytes

Let	the	default	block	size	be	1,024	bytes

Therefore,
We	will	have	1024/54	=	18	records	per	disk	block
Also,	No.	of	blocks	needed	for	the	entire	table	=	
5000000/18	=	277,778	blocks

Motivating	Scenario



Now,	a	binary	search	on	the	index	will	result	in
log2 277778	=	18.08	=	19	block	accesses.

Also,	to	find	the	address	of	the	actual	record,	
which	requires	a	further	block	access	to	read,	
bringing	the	total	to	19	+	1	=	20	block	accesses.

Thus,	indexing	results	in	a	much	better	
performance	as	compared	to	searching	the	entire	
database.

Motivating	Scenario



Useful	for	search	query	/	range	query	/	joins

Revisit	Tweet	Example:

Tweets(tid,	user,	time,	content)

Indexes



Tweet	Relation	in	a	Sequential	File

• File	is	sorted	on	“tid”

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content
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Index	Classification

• Primary/secondary
– Primary	=	determines	the	location	of	indexed	records	on	disk
– Secondary	=	cannot	reorder	data,	does	not	determine	data	location

• Dense/sparse
– Dense	=	every	key	in	the	data	appears	in	the	index
– Sparse	=	the	index	contains	only	some	keys

• Clustered/unclustered
– Clustered	=	records	close	in	index	are	close	in	data
– Unclustered =	records	close	in	index	may	be	far	in	data

14



Ex1.	Draw	a	secondary dense index	on	
“user”

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex1.	Secondary	Dense	Index	(user)

• Dense:	an	“index	key”	(not	database	key)	for	every	database	record
• Secondary:	cannot	reorder	data,	does	not	determine	data	location
• Also,	Unclustered:	records	close	in	index	may	be	far	in	data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content
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Ex2.	Draw	a	primary dense index	on	
“tid”

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex2.	Primary	Dense	Index	(tid)

• Dense:	an	“index	key”	for	every	database	record	
– (In	this	case)	every	“database	key”	appears	as	an	“index	key”

• Primary:	determines	the	location	of	indexed	records
• Also,	Clustered:	records	close	in	index	are	close	in	data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content
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Improve	from	Primary	Clustered	Index?

Clustered	Index	can	be	made	Sparse
(normally	one	key	per	page)



Ex3.	Draw	a	primary sparse index	on	
“tid”

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex3.	Primary	Sparse	Index	(tid)

• Only	one	index	file	page	instead	of	two

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

30

50

70



B+	trees



Insertions	and	Deletion	in	a	B+	tree

• Note:		the	<,	<=	assumptions	in	this	class:	

40 50 60

30 40 55

Internal	node:
• Left	pointer	from	
key	=	k:	to	keys		<	k
• Right	pointer:	to	
keys	>=	k

70

40 50 60

40 50 60

Leaf	node:
• Left	pointer	from	key	=	k:	to	the	block	
containing	data	with	value	k		in	that	attribute
• Last	remaining	pointer	on	right:	To	the	next	
leaf	on	right



Insertions	and	Deletion	in	a	B+	tree

• Note:	when	a	leaf	is	split,	the	middle	key	is	copied	to	the	new	
leaf	on	right (and	also	inserted	in	parent)
– Since	we	assumed	the	right	pointer from		key	=	k	points	to	keys	>= k

• Note:	when	an	internal	node	is	split,	we	do	not	need	to	copy	
the	middle	key	to	the	right,	only	insert	it	in	parent
– Use	the	left	pointer	of	the	new	right	internal	node

• Some	examples….



Problem	1:	
B+	tree	insertion	and	deletion

• Start	with	an	empty	B+	tree,	d=2
• Insert	17,	3,	25,	95,	8,	57,	69
• Then	insert	29,	91,	78,	80,	92,	99,	97



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Problem	1:	
B+	tree	insertion	and	deletion

• Now	delete	all	nodes	in	the	following	order:
57,	3,	99,	29,	17,	25,	95,	8,	78,	92,	69,	97,	91



Deletions



Deletions



Deletions	(continued	for	3)



Deletions



Deletions



Deletions



• Note:	next	few	slides	are	older	versions	of	the	previous	slides
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Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion

• Now	delete	all	nodes	in	the	following	order:
57,	3,	99,	29,	17,	25,	95,	8,	78,	92,	69,	97,	91



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion


