
CSE	444:	Database	Internals

Section	2:	Indexing



Reminders

• Lab	1	Done!
• Lab	2	will	be	released	today!

– Will	need	to	run	`git pull	upstream	lab2`	to	get	new	files

• Homework	2	due	next	Friday

• Today,	we	will	go	through	indexing	examples	
together



Indexing

• Another	file	storing	index	attribute(s)	and	
pointers	(aka	RecordID)	or	actual	records
– Typically	smaller	than	the	data	file

• Motivation
– Fast	access	to	data	(less	disk	I/O)



Consider	the	following	database	schema:

Field	Name Data	Type Size	on	disk
Id (primary	key) Unsigned	INT 4	bytes
firstName Char(50) 50	bytes
lastName Char(50) 50	bytes
emailAddress Char(100) 100	bytes

Motivating	Scenario



Total	records	in	the	database	=	5,000,000
Length	of	each	record	=	4+50+50+100	=	204	bytes

Let	the	default	block	size	be	1,024	bytes

How	many	disk	blocks	are	needed	to	store	this	
data	set?

Motivating	Scenario

We	will	have	1024/204	=	5	records	per	disk	block
No.	of	blocks	needed	for	the	entire	table	=	5000000/5	=	1,000,000	blocks



Suppose	you	want	to	find	the	person	with	a	
particular	id (say	5000)
Assume	data	file	sorted	on	primary	key

What	is	the	best	way	to	do	so?

Motivating	Scenario



Linear	Search
No.	of	block	accesses	=	1000000/2	

=	500,000	on	avg

Binary	Search
No.	of	block	accesses	=	log2 1000000	=	19.93	=	20

Motivating	Scenario



Now,	suppose	you	want	to	find	the	person	having	
firstName =	‘John’

Here,	the	column	isn’t	sorted	and	does	not	hold	an	
unique	value.

What	is	the	best	way	to	do	search	for	the	records?

Motivating	Scenario



Solution:	Create	an	index	on	the	firstName
column

The	schema	for	an	index	on	firstName is:
Field	Name Data	Type Size	on	disk
firstName Char(50) 50	bytes
(record	pointer) Special 4	bytes

Motivating	Scenario



Total	records	in	the	database	=	5,000,000
Length	of	each	index	record	=	4+50	=	54	bytes

Let	the	default	block	size	be	1,024	bytes

Therefore,
We	will	have	1024/54	=	18	records	per	disk	block
Also,	No.	of	blocks	needed	for	the	entire	table	=	
5000000/18	=	277,778	blocks

Motivating	Scenario



Now,	a	binary	search	on	the	index	will	result	in
log2 277778	=	18.08	=	19	block	accesses.

Also,	to	find	the	address	of	the	actual	record,	
which	requires	a	further	block	access	to	read,	
bringing	the	total	to	19	+	1	=	20	block	accesses.

Thus,	indexing	results	in	a	much	better	
performance	as	compared	to	searching	the	entire	
database.

Motivating	Scenario



Useful	for	search	query	/	range	query	/	joins

Revisit	Tweet	Example:

Tweets(tid,	user,	time,	content)

Indexes



Tweet	Relation	in	a	Sequential	File

• File	is	sorted	on	“tid”

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



CSE	444	- Spring	2014

Index	Classification

• Primary/secondary
– Primary	=	determines	the	location	of	indexed	records	on	disk
– Secondary	=	cannot	reorder	data,	does	not	determine	data	location

• Dense/sparse
– Dense	=	every	key	in	the	data	appears	in	the	index
– Sparse	=	the	index	contains	only	some	keys

• Clustered/unclustered
– Clustered	=	records	close	in	index	are	close	in	data
– Unclustered =	records	close	in	index	may	be	far	in	data

14



Ex1.	Draw	a	secondary dense index	on	
“user”

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex1.	Secondary	Dense	Index	(user)

• Dense:	an	“index	key”	(not	database	key)	for	every	database	record
• Secondary:	cannot	reorder	data,	does	not	determine	data	location
• Also,	Unclustered:	records	close	in	index	may	be	far	in	data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

1

1

2

2

2

3

4

4



Ex2.	Draw	a	primary dense index	on	
“tid”

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex2.	Primary	Dense	Index	(tid)

• Dense:	an	“index	key”	for	every	database	record	
– (In	this	case)	every	“database	key”	appears	as	an	“index	key”

• Primary:	determines	the	location	of	indexed	records
• Also,	Clustered:	records	close	in	index	are	close	in	data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

20

30

40

50

60

70

80



Improve	from	Primary	Clustered	Index?

Clustered	Index	can	be	made	Sparse
(normally	one	key	per	page)



Ex3.	Draw	a	primary sparse index	on	
“tid”

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content



Ex3.	Primary	Sparse	Index	(tid)

• Only	one	index	file	page	instead	of	two

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

30

50

70



B+	trees



Insertions	and	Deletion	in	a	B+	tree

• Note:		the	<,	<=	assumptions	in	this	class:	

40 50 60

30 40 55

Internal	node:
• Left	pointer	from	
key	=	k:	to	keys		<	k
• Right	pointer:	to	
keys	>=	k

70

40 50 60

40 50 60

Leaf	node:
• Left	pointer	from	key	=	k:	to	the	block	
containing	data	with	value	k		in	that	attribute
• Last	remaining	pointer	on	right:	To	the	next	
leaf	on	right



Insertions	and	Deletion	in	a	B+	tree

• Note:	when	a	leaf	is	split,	the	middle	key	is	copied	to	the	new	
leaf	on	right (and	also	inserted	in	parent)
– Since	we	assumed	the	right	pointer from		key	=	k	points	to	keys	>= k

• Note:	when	an	internal	node	is	split,	we	do	not	need	to	copy	
the	middle	key	to	the	right,	only	insert	it	in	parent
– Use	the	left	pointer	of	the	new	right	internal	node

• Some	examples….



Problem	1:	
B+	tree	insertion	and	deletion

• Start	with	an	empty	B+	tree,	d=2
• Insert	17,	3,	25,	95,	8,	57,	69
• Then	insert	29,	91,	78,	80,	92,	99,	97



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Insertions



Problem	1:	
B+	tree	insertion	and	deletion

• Now	delete	all	nodes	in	the	following	order:
57,	3,	99,	29,	17,	25,	95,	8,	78,	92,	69,	97,	91



Deletions



Deletions



Deletions	(continued	for	3)



Deletions



Deletions



Deletions



• Note:	next	few	slides	are	older	versions	of	the	previous	slides



Problem	1:	
B+	tree	insertion	and	deletion

• Start	with	an	empty	B+	tree,	d=2
• Insert	17,	3,	25,	95,	8,	57,	69
• Then	insert	29,	91,	78,	80,	92,	99,	97



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion

• Now	delete	all	nodes	in	the	following	order:
57,	3,	99,	29,	17,	25,	95,	8,	78,	92,	69,	97,	91



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion



Problem	1:	
B+	tree	insertion	and	deletion


