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Announcements

= I’'m aware that students in class are affected by
current events

= To help, we make two changes:
 Cancel HW6 (apologies to 4 students who submitted)
* Final report becomes extra credit

= Please do focus on Lab5: you will learn a lot

» Please fill out the course evaluation form:
hitps://uw.iasystem.org/survey /225399
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https://uw.iasystem.org/survey/225399

Final Project Instructions (Lab 5)

See course website for details!

1. Design and implementation:
* There is a mandatory part and extensions
* Design, implement, and evaluate two extensions

2. Testing and evaluation
* For your extension, write your own JUnit tests
* Feel free to also write scripts

3. Final report - Exira credit
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Final Report (Lab 5)

Extra credit (Spring’20) but highly recommended!
= Single-column & single-spaced
= Write your name!

= Structure of the final report
 Sec 1. Overall System Architecture (2 pages)

* Can reuse text from lab write-ups
» Sec 2. Detailed design of the query optimizer and
your extension (2 pages)

* Include an analysis of the query plans that your system
generates in different scenarios.

» Sec 3. Discussion (0.5-1 page)
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Selinger Optimizer History

= 1960’s: first database systems

* Use tree and graph data models

= 1970: Ted Codd proposes relational model

* E.F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 1970

= 1974: System R from IBM Research

* One of first systems to implement relational model

= 1979: Seminal query optimizer paper by P. Selinger et.
al.
* Invented cost-based query optimization
 Dynamic programming algorithm for join order computation
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Next Example Acks

Implement variant of Selinger optimizer in
SimpleDB

Designed to help you understand how this would
work in SimpleDB

Many following slides from Sam Madden at MIT
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Selinger Optimizer

Problem:
= How to order a series of joins over N tables A,B,C,...

E.g. A.a=B.b AND A.c=D.d AND B.e=C/f

N! ways to order joins; e.g. ABCD, ACBD, ....

_ 1 2(V-1) lans/ordering; e.g.
CN—l—N( v-1 )" %9

(((AB)C)D),((AB)(CD)))

Multiple implementations (hash, nested loops)

Naive approach does not scale
« E.g. N =20, #join orders 20! =2.4 x 10'®; many more plans
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Selinger Optimizer

= Only left-deep plan: (((AB)C)D) - eliminate Cy;.
= Push down selections
= Don’t consider cartesian products

» Dynamic programming algorithm
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Dynamic Programming

OrderJoins(...): SimpleDB Lab5:
. . . you implement orderJoins
R = set of relations to join

Ford=1toN: /* where N=|R] */
For S in {all size-d subsets of R}:

optjoin(S) = (S - a) join q, ~ Use: enumerateSubsets

where a is the single relation that minimizes:

. .. . computeCostAndCardOfSubplan
min.cost to join (S - a) with a +

min.access cost FOI’ a

Note: optjoin(S-a) is cached from previous iterations
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g orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost{OptJoin(S))
= Assume all joins are Nested | A
Loop

June 3, 2020 CSE 444 - Spring 2020




= orderJoins(A, B, C, D) Subplan S

optloin(S) | Cost(OptJoin(S))
= Assume all joins are NL A Index 100
scan
B Seq. scan |50
"d=1 C Seq scan | 120
* A= Dbest way to access A D Bttree 400
(sequential scan, predicate-
. scan
pushdown on index, etc)

B = best way to access B

« C =best way to access C

D = best way to access D

» Total number of steps:
choose(N, 1)

June 3, 2020
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“ orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100

ad=2 scan
B Seq. scan |50

- {A,B} = AB or BA

use previously computed

best way to access Aand B
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» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156
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» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

 {B,C}=BCorCB

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156
{B, C} BC 98
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» orderJoins(A, B, C, D)

=d=2

- {A,B} =AB or BA
use previously computed

bestxway 10 access A and B
. BC or CB

June 3, 2020

!

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
A, B} BA 156
{B, C BC 98
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» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed

. {B,D}=BD or DB
- {A,D} =AD or DA

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98
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» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed

. {B,D}=BD or DB
- {A,D} =AD or DA

» Total number of steps: choose(N, 2) x 2

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98
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Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
{B, C} BC 98
"d=3 (A, B, C]  |BAC 500
« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A
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» orderJoins(A, B, C, D)

=d=3

« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A

June 3, 2020

Subplan S optoin(S) Cost(OptJoin(S))
A Index scan 100

B Seq. scan 50

{A, B} BA 156

(8, C} | BC 98
E—

{A, B, C} BAC 500

CSE 444 - Spring 2020

optdoin(B,C)
and its cost are
already cached
in table




Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
(B, C} | BC 98
E—
"d=3 (A, B,C] | BAC 500
« {AB,C} =

June 3, 2020

Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C
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Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
(B, C} | BC 98
. d = 3 BAC 500

-|5A,B,Ct|=
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C
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Subplan S optoin(S)

Cost(OptJoin(S))

L) )1 EC A Index scan 100

B Seq. scan 50

= orderJoins(A, B, C, D) A B} oA 156
(8, C} | BC 98

=d=3 BAC 500

-|5A,B,Ct|=
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C

optdoin(B,C)
and its cost are
already cached
in table

- {A,B,D} =
Remove A: compare A({B,D}) to ({B,D})A

. (ACD} =...
. {B,C,D}=...

» Total number of steps: choose(N, 3) x 3 x 2
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» orderJoins(A, B, C, D)

md=4
 {AB,C,D} =

Subplan S | optloin(S) | Cost(OptJoin(S))
A Index 100
scan

B Seq. scan | 50

(A B]  |BA 156

{B, C} BC 98

{A, B, C} |BAC 500

{B, C, D} | | DBC 150

Remove A: compare AI_{_&,Q_QDIto ({B,C,D})A
Remove B: compare B({A,C,D}) to ({A,C,

Remove C: compare C({A,B,D}
Remove D: compare D({A,B,C}) to ({A,B,

to ({A,

C,D})B
B,D})C
B,C})D

" optJoin(B, C, D)
and its cost are
already cached
in table

» Total number of steps: choose(N, 4) x 4 x 2

June 3, 2020
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Discussion

= We kept the slides from Sam Madden from MIT,

however they use inconsistently left-linear trees
and linear trees

= For linear: both (BCD)A, A(BCD)
= For left linear: only (BCD)A, (ACD)B...
= For bushy: include (AB)(CD), etc

et VAN
25 VAN

B
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Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1

* Equivalently: number of binary strings of size N, except 00...0:
009, 001, 010, 011, 100, 101, 110, 111
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Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1
* Equivalently: number of binary strings of size N, except 00...0:

009, 001, 010, 011, 100, 101, 110, 111

» For each subset of size d:

 d ways to remove one element

* 2 ways for compute AB or BA (except when d=2, when we
already accounted for that - why?)
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Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1
* Equivalently: number of binary strings of size N, except 00...0:

009, 001, 010, 011, 100, 101, 110, 111

» For each subset of size d:

 d ways to remove one element

* 2 ways for compute AB or BA (except when d=2, when we
already accounted for that - why?)

= Total #plans considered
« Choose(N, 1) + 2 Choose(N, 2) +..... + N Choose (N, N)
« Equivalently: total number of 1’s in all strings of size N
* N 2N because every 1 occurs 2N'! times
* Need to further multiply by 2, to account for AB or BA
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Interesting Orders

= Some query plans produce data in sorted order
 E.g scan over a primary index, merge-join
* Called interesting order

= Next operator may use this order
* E.g. can be another merge-join

= For each subset of relations, compute multiple optimal
plans, one for each interesting order

= Increases complexity by factor k+1, where k=number of
interesting orders
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Asymmetric, cost depends on the order
= Left: Outer relation Right: Inner relation

= For nested-loo?-ioin, we try to load the outer
(typically smaller) relation in memory, then
read the inner relation one page at a time

B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

= For index-join,

we assume right (inner) relation has index
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= Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-
pass), more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T

2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,
worse if more relations

3. Nested loop join, consider top-down iterator next()

1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base
relation T multiple times

2. (R, (S, T)): Reads the chunks of R once, reads computed relation
(S, T) multiple times, either more time or more space
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Implementation in SimpleDB (lab5)

1.

JoinOptimizer.java (and the classes used

there)
>
S.d=U.q
2. Returns vector of “LogicalloinNode” \
Two base tables, two join attributes, predicate AN U
e.g. R(a, b), S, d), Tla, f), Ulp, q| B6-T
(R, S, R.q, S.c, =)

June 3, 2020

Recall that SimpleDB keeps all attributes of _ T
R, S after their join R.q, R.b, S.c, S.d /é— c

Output vector looks like:
<(R, S, R.q, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>
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Implementation in SimpleDB (lab5)

Any advantage of returning pairs?

= Flexibility to consider all linear plans
<(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)> <

More Details: /

1. You mainly need to implement “orderJoins(..)” 7{=\\f
>

2. "“CostCard” data structure stores a plan, its cost

and cardinality: you would need to estimate them
3. “PlanCache” stores the table in dyn. Prog: %

Maps a set of LIN  to
a vector of LIN (best plan for the vector), R

its cost, and its cardinality
LIN = LogicalloinNode
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