
1June 3, 2020

Database System Internals

CSE 444 - Spring 2020

Query Optimization Review

Announcements

§ I’m aware that students in class are affected by
current events

§ To help, we make two changes:
• Cancel HW6 (apologies to 4 students who submitted)
• Final report becomes extra credit

§ Please do focus on Lab5: you will learn a lot

§ Please fill out the course evaluation form:
https://uw.iasystem.org/survey/225399

June 3, 2020 CSE 444 - Spring 2020 2

https://uw.iasystem.org/survey/225399

Final Project Instructions (Lab 5)

See course website for details!

1. Design and implementation:
• There is a mandatory part and extensions
• Design, implement, and evaluate two extensions

2. Testing and evaluation
• For your extension, write your own JUnit tests
• Feel free to also write scripts

3. Final report – Extra credit

CSE 444 - Spring 2020 3June 3, 2020

Final Report (Lab 5)

Extra credit (Spring’20) but highly recommended!
§ Single-column & single-spaced
§Write your name!
§ Structure of the final report

• Sec 1. Overall System Architecture (2 pages)
• Can reuse text from lab write-ups

• Sec 2. Detailed design of the query optimizer and
your extension (2 pages)

• Include an analysis of the query plans that your system
generates in different scenarios.

• Sec 3. Discussion (0.5-1 page)

CSE 444 - Spring 2020 4June 3, 2020

Selinger Optimizer History

§ 1960’s: first database systems
• Use tree and graph data models

§ 1970: Ted Codd proposes relational model
• E.F. Codd. A relational model of data for large shared data

banks. Communications of the ACM, 1970

§ 1974: System R from IBM Research
• One of first systems to implement relational model

§ 1979: Seminal query optimizer paper by P. Selinger et.
al.

• Invented cost-based query optimization
• Dynamic programming algorithm for join order computation

CSE 444 - Spring 2020 9June 3, 2020

Next Example Acks

Implement variant of Selinger optimizer in
SimpleDB

Designed to help you understand how this would
work in SimpleDB

Many following slides from Sam Madden at MIT

CSE 444 - Spring 2020 19June 3, 2020

Selinger Optimizer

Problem:
§ How to order a series of joins over N tables A,B,C,…

E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

§ N! ways to order joins; e.g. ABCD, ACBD, ….

§ plans/ordering; e.g.
(((AB)C)D),((AB)(CD)))

§ Multiple implementations (hash, nested loops)

§ Naïve approach does not scale
• E.g. N = 20, #join orders 20! = 2.4 x 1018 ; many more plans

20CSE 444 - Spring 2020June 3, 2020

Selinger Optimizer

§ Only left-deep plan: (((AB)C)D) – eliminate CN-1.

§ Push down selections

§ Don’t consider cartesian products

§ Dynamic programming algorithm

21CSE 444 - Spring 2020June 3, 2020

Dynamic Programming

OrderJoins(…):
R = set of relations to join
For d = 1 to N: /* where N = |R| */

For S in {all size-d subsets of R}:
optjoin(S) = (S – a) join a,

where a is the single relation that minimizes:
cost(optjoin(S – a)) +
min.cost to join (S – a) with a +
min.access cost for a

Note: optjoin(S-a) is cached from previous iterations

SimpleDB Lab5:
you implement orderJoins

CSE 444 - Spring 2020 22

Use:
computeCostAndCardOfSubplan

Use: enumerateSubsets

June 3, 2020

Example

§ orderJoins(A, B, C, D)
§ Assume all joins are Nested

Loop

23

Subplan S optJoin(S) Cost(OptJoin(S))

A

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)
§ Assume all joins are NL

§ d = 1
• A = best way to access A

(sequential scan, predicate-
pushdown on index, etc)

• B = best way to access B
• C = best way to access C
• D = best way to access D

§ Total number of steps:
choose(N, 1)

24

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
C Seq scan 120
D B+tree

scan
400

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

25

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

26

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…
{A, B} BA 156

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB

27

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB

28

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB
• {C,D} = CD or DC
• {A,C} = AC or CA
• {B,D} = BD or DB
• {A,D} = AD or DA

29

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98
……..

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB
• {C,D} = CD or DC
• {A,C} = AC or CA
• {B,D} = BD or DB
• {A,D} = AD or DA

§ Total number of steps: choose(N, 2) × 2

30

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98
……..

CSE 444 - Spring 2020June 3, 2020

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

June 3, 2020 CSE 444 - Spring 2020 31

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

June 3, 2020 CSE 444 - Spring 2020 32

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

June 3, 2020 CSE 444 - Spring 2020 33

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

June 3, 2020 CSE 444 - Spring 2020 34

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

• {A,B,D} =
Remove A: compare A({B,D}) to ({B,D})A
…

• {A,C,D} =…
• {B,C,D} =…

§ Total number of steps: choose(N, 3) × 3 × 2

35

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B,C)
and its cost are
already cached
in table

June 3, 2020 CSE 444 - Spring 2020

Example

§ orderJoins(A, B, C, D)

§ d = 4
• {A,B,C,D} =

Remove A: compare A({B,C,D}) to ({B,C,D})A
Remove B: compare B({A,C,D}) to ({A,C,D})B
Remove C: compare C({A,B,D}) to ({A,B,D})C
Remove D: compare D({A,B,C}) to ({A,B,C})D

§ Total number of steps: choose(N, 4) × 4 × 2

June 3, 2020 CSE 444 - Spring 2020 36

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
{A, B} BA 156
{B, C} BC 98
{A, B, C} BAC 500
{B, C, D} DBC 150
……..

optJoin(B, C, D)
and its cost are
already cached
in table

Discussion

§We kept the slides from Sam Madden from MIT,
however they use inconsistently left-linear trees
and linear trees

§ For linear: both (BCD)A, A(BCD)
§ For left linear: only (BCD)A, (ACD)B…
§ For bushy: include (AB)(CD), etc

June 3, 2020 CSE 444 - Spring 2020 37

A B

C

D

B

C

A

D

Complexity

§ Total #subsets considered
• Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
• All nonempty subsets of a size N set: 2N – 1
• Equivalently: number of binary strings of size N, except 00…0:

000, 001, 010, 011, 100, 101, 110, 111

June 3, 2020 CSE 444 - Spring 2020 38

Complexity

§ Total #subsets considered
• Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
• All nonempty subsets of a size N set: 2N – 1
• Equivalently: number of binary strings of size N, except 00…0:

000, 001, 010, 011, 100, 101, 110, 111

§ For each subset of size d:
• d ways to remove one element
• 2 ways for compute AB or BA (except when d=2, when we

already accounted for that – why?)

39CSE 444 - Spring 2020June 3, 2020

Complexity

§ Total #subsets considered
• Choose(N, 1) + Choose(N, 2) + ….. + Choose (N, N)
• All nonempty subsets of a size N set: 2N – 1
• Equivalently: number of binary strings of size N, except 00…0:

000, 001, 010, 011, 100, 101, 110, 111

§ For each subset of size d:
• d ways to remove one element
• 2 ways for compute AB or BA (except when d=2, when we

already accounted for that – why?)

§ Total #plans considered
• Choose(N, 1) + 2 Choose(N, 2) + ….. + N Choose (N, N)
• Equivalently: total number of 1’s in all strings of size N
• N 2N-1 because every 1 occurs 2N-1 times
• Need to further multiply by 2, to account for AB or BA

40CSE 444 - Spring 2020June 3, 2020

Interesting Orders

§ Some query plans produce data in sorted order
• E.g scan over a primary index, merge-join
• Called interesting order

§ Next operator may use this order
• E.g. can be another merge-join

§ For each subset of relations, compute multiple optimal
plans, one for each interesting order

§ Increases complexity by factor k+1, where k=number of
interesting orders

CSE 444 - Spring 2020 41June 3, 2020

Why Left-Deep

Asymmetric, cost depends on the order
§ Left: Outer relation Right: Inner relation

§ For nested-loop-join, we try to load the outer
(typically smaller) relation in memory, then
read the inner relation one page at a time

B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

§ For index-join,
we assume right (inner) relation has index

42CSE 444 - Spring 2020June 3, 2020

Why Left-Deep

§ Advantages of left-deep trees?
1. Fits well with standard join algorithms (nested loop, one-

pass), more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T
2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,

worse if more relations

3. Nested loop join, consider top-down iterator next()
1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base

relation T multiple times
2. (R, (S, T)): Reads the chunks of R once, reads computed relation

(S, T) multiple times, either more time or more space

43CSE 444 - Spring 2020June 3, 2020

1. JoinOptimizer.java (and the classes used
there)

2. Returns vector of “LogicalJoinNode”
Two base tables, two join attributes, predicate
e.g. R(a, b), S(c, d), T(a, f), U(p, q)
(R, S, R.a, S.c, =)
Recall that SimpleDB keeps all attributes of
R, S after their join R.a, R.b, S.c, S.d

3. Output vector looks like:
<(R, S, R.a, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

Implementation in SimpleDB (lab5)

44

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

CSE 444 - Spring 2020June 3, 2020

Any advantage of returning pairs?
§ Flexibility to consider all linear plans

<(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)>

More Details:
1. You mainly need to implement “orderJoins(..)”
2. “CostCard” data structure stores a plan, its cost

and cardinality: you would need to estimate them
3. “PlanCache” stores the table in dyn. Prog:

Maps a set of LJN to
a vector of LJN (best plan for the vector),
its cost, and its cardinality
LJN = LogicalJoinNode

Implementation in SimpleDB (lab5)

45

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

CSE 444 - Spring 2020June 3, 2020

