fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[ J— 1 L]
NumberOfTrial 47
[ A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee ] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [ 2 A — s ]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [ Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Query Optimization Review

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

June 3, 2020 CSE 444 - Spring 2020




Announcements

= I’'m aware that students in class are affected by
current events

= To help, we make two changes:
 Cancel HW6 (apologies to 4 students who submitted)
* Final report becomes extra credit

= Please do focus on Lab5: you will learn a lot

» Please fill out the course evaluation form:
hitps://uw.iasystem.org/survey /225399

June 3, 2020 CSE 444 - Spring 2020



https://uw.iasystem.org/survey/225399

Final Project Instructions (Lab 5)

See course website for details!

1. Design and implementation:
* There is a mandatory part and extensions
* Design, implement, and evaluate two extensions

2. Testing and evaluation
* For your extension, write your own JUnit tests
* Feel free to also write scripts

3. Final report - Exira credit

June 3, 2020 CSE 444 - Spring 2020




Final Report (Lab 5)

Extra credit (Spring’20) but highly recommended!
= Single-column & single-spaced
= Write your name!

= Structure of the final report
 Sec 1. Overall System Architecture (2 pages)

* Can reuse text from lab write-ups
» Sec 2. Detailed design of the query optimizer and
your extension (2 pages)

* Include an analysis of the query plans that your system
generates in different scenarios.

» Sec 3. Discussion (0.5-1 page)

June 3, 2020 CSE 444 - Spring 2020




Selinger Optimizer History

= 1960’s: first database systems

* Use tree and graph data models

= 1970: Ted Codd proposes relational model

* E.F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 1970

= 1974: System R from IBM Research

* One of first systems to implement relational model

= 1979: Seminal query optimizer paper by P. Selinger et.
al.
* Invented cost-based query optimization
 Dynamic programming algorithm for join order computation

June 3, 2020 CSE 444 - Spring 2020




Next Example Acks

Implement variant of Selinger optimizer in
SimpleDB

Designed to help you understand how this would
work in SimpleDB

Many following slides from Sam Madden at MIT

June 3, 2020 CSE 444 - Spring 2020



Selinger Optimizer

Problem:
= How to order a series of joins over N tables A,B,C,...

E.g. A.a=B.b AND A.c=D.d AND B.e=C/f

N! ways to order joins; e.g. ABCD, ACBD, ....

_ 1 2(V-1) lans/ordering; e.g.
CN—l—N( v-1 )" %9

(((AB)C)D),((AB)(CD)))

Multiple implementations (hash, nested loops)

Naive approach does not scale
« E.g. N =20, #join orders 20! =2.4 x 10'®; many more plans

June 3, 2020 CSE 444 - Spring 2020




Selinger Optimizer

= Only left-deep plan: (((AB)C)D) - eliminate Cy;.
= Push down selections
= Don’t consider cartesian products

» Dynamic programming algorithm

June 3, 2020 CSE 444 - Spring 2020




Dynamic Programming

OrderJoins(...): SimpleDB Lab5:
. . . you implement orderJoins
R = set of relations to join

Ford=1toN: /* where N=|R] */
For S in {all size-d subsets of R}:

optjoin(S) = (S - a) join q, ~ Use: enumerateSubsets

where a is the single relation that minimizes:

. .. . computeCostAndCardOfSubplan
min.cost to join (S - a) with a +

min.access cost FOI’ a

Note: optjoin(S-a) is cached from previous iterations

June 3, 2020 CSE 444 - Spring 2020




g orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost{OptJoin(S))
= Assume all joins are Nested | A
Loop

June 3, 2020 CSE 444 - Spring 2020




= orderJoins(A, B, C, D) Subplan S

optloin(S) | Cost(OptJoin(S))
= Assume all joins are NL A Index 100
scan
B Seq. scan |50
"d=1 C Seq scan | 120
* A= Dbest way to access A D Bttree 400
(sequential scan, predicate-
. scan
pushdown on index, etc)

B = best way to access B

« C =best way to access C

D = best way to access D

» Total number of steps:
choose(N, 1)

June 3, 2020

CSE 444 - Spring 2020




“ orderJoins(A, B, C, D) Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100

ad=2 scan
B Seq. scan |50

- {A,B} = AB or BA

use previously computed

best way to access Aand B

June 3, 2020 CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156

June 3, 2020 CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed
best way to access Aand B

 {B,C}=BCorCB

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
(A B] |BA 156
{B, C} BC 98

CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=2

- {A,B} =AB or BA
use previously computed

bestxway 10 access A and B
. BC or CB

June 3, 2020

!

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
A, B} BA 156
{B, C BC 98

CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed

. {B,D}=BD or DB
- {A,D} =AD or DA

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98

CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=2

 {A,B} =AB or BA
use previously computed

. {B,D}=BD or DB
- {A,D} =AD or DA

» Total number of steps: choose(N, 2) x 2

June 3, 2020

Subplan S | optJoin(S) | Cost(OptJoin(S))
A Index 100
scan
B Seq. scan |50
ﬁ, B} BA 156
{8, C} BC 98

CSE 444 - Spring 2020




Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
{B, C} BC 98
"d=3 (A, B, C]  |BAC 500
« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A

June 3, 2020 CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

=d=3

« {AB,C} =

Remove A: compare A({B,C}) to ({B,C})A

June 3, 2020

Subplan S optoin(S) Cost(OptJoin(S))
A Index scan 100

B Seq. scan 50

{A, B} BA 156

(8, C} | BC 98
E—

{A, B, C} BAC 500

CSE 444 - Spring 2020

optdoin(B,C)
and its cost are
already cached
in table




Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
(B, C} | BC 98
E—
"d=3 (A, B,C] | BAC 500
« {AB,C} =

June 3, 2020

Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C

CSE 444 - Spring 2020

optdoin(B,C)
and its cost are
already cached
in table




Subplan S optoin(S) Cost(OptJoin(S))
L) )1 EC A Index scan 100
B Seq. scan 50
» orderJoins(A, B, C, D) i'/; o] A -y
(B, C} | BC 98
. d = 3 BAC 500

-|5A,B,Ct|=
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

June 3, 2020 CSE 444 - Spring 2020

optdoin(B,C)
and its cost are
already cached
in table




Subplan S optoin(S)

Cost(OptJoin(S))

L) )1 EC A Index scan 100

B Seq. scan 50

= orderJoins(A, B, C, D) A B} oA 156
(8, C} | BC 98

=d=3 BAC 500

-|5A,B,Ct|=
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A to ({A,C})B
Remove C: compare C({A B}) to ({A,B})C

optdoin(B,C)
and its cost are
already cached
in table

- {A,B,D} =
Remove A: compare A({B,D}) to ({B,D})A

. (ACD} =...
. {B,C,D}=...

» Total number of steps: choose(N, 3) x 3 x 2

June 3, 2020 CSE 444 - Spring 2020




» orderJoins(A, B, C, D)

md=4
 {AB,C,D} =

Subplan S | optloin(S) | Cost(OptJoin(S))
A Index 100
scan

B Seq. scan | 50

(A B]  |BA 156

{B, C} BC 98

{A, B, C} |BAC 500

{B, C, D} | | DBC 150

Remove A: compare AI_{_&,Q_QDIto ({B,C,D})A
Remove B: compare B({A,C,D}) to ({A,C,

Remove C: compare C({A,B,D}
Remove D: compare D({A,B,C}) to ({A,B,

to ({A,

C,D})B
B,D})C
B,C})D

" optJoin(B, C, D)
and its cost are
already cached
in table

» Total number of steps: choose(N, 4) x 4 x 2

June 3, 2020

CSE 444 - Spring 2020




Discussion

= We kept the slides from Sam Madden from MIT,

however they use inconsistently left-linear trees
and linear trees

= For linear: both (BCD)A, A(BCD)
= For left linear: only (BCD)A, (ACD)B...
= For bushy: include (AB)(CD), etc

et VAN
25 VAN

B

June 3, 2020 CSE 444 - Spring 2020



Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1

* Equivalently: number of binary strings of size N, except 00...0:
009, 001, 010, 011, 100, 101, 110, 111

June 3, 2020 CSE 444 - Spring 2020



Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1
* Equivalently: number of binary strings of size N, except 00...0:

009, 001, 010, 011, 100, 101, 110, 111

» For each subset of size d:

 d ways to remove one element

* 2 ways for compute AB or BA (except when d=2, when we
already accounted for that - why?)

June 3, 2020 CSE 444 - Spring 2020




Complexity

= Total #subsets considered
« Choose(N, 1) + Choose(N, 2) + ..... + Choose (N, N)
« All nonempty subsets of a size N set: 2N - 1
* Equivalently: number of binary strings of size N, except 00...0:

009, 001, 010, 011, 100, 101, 110, 111

» For each subset of size d:

 d ways to remove one element

* 2 ways for compute AB or BA (except when d=2, when we
already accounted for that - why?)

= Total #plans considered
« Choose(N, 1) + 2 Choose(N, 2) +..... + N Choose (N, N)
« Equivalently: total number of 1’s in all strings of size N
* N 2N because every 1 occurs 2N'! times
* Need to further multiply by 2, to account for AB or BA

June 3, 2020 CSE 444 - Spring 2020




Interesting Orders

= Some query plans produce data in sorted order
 E.g scan over a primary index, merge-join
* Called interesting order

= Next operator may use this order
* E.g. can be another merge-join

= For each subset of relations, compute multiple optimal
plans, one for each interesting order

= Increases complexity by factor k+1, where k=number of
interesting orders

June 3, 2020 CSE 444 - Spring 2020




Asymmetric, cost depends on the order
= Left: Outer relation Right: Inner relation

= For nested-loo?-ioin, we try to load the outer
(typically smaller) relation in memory, then
read the inner relation one page at a time

B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

= For index-join,

we assume right (inner) relation has index

June 3, 2020 CSE 444 - Spring 2020




= Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-
pass), more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T

2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,
worse if more relations

3. Nested loop join, consider top-down iterator next()

1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base
relation T multiple times

2. (R, (S, T)): Reads the chunks of R once, reads computed relation
(S, T) multiple times, either more time or more space

June 3, 2020 CSE 444 - Spring 2020




Implementation in SimpleDB (lab5)

1.

JoinOptimizer.java (and the classes used

there)
>
S.d=U.q
2. Returns vector of “LogicalloinNode” \
Two base tables, two join attributes, predicate AN U
e.g. R(a, b), S, d), Tla, f), Ulp, q| B6-T
(R, S, R.q, S.c, =)

June 3, 2020

Recall that SimpleDB keeps all attributes of _ T
R, S after their join R.q, R.b, S.c, S.d /é— c

Output vector looks like:
<(R, S, R.q, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

CSE 444 - Spring 2020




Implementation in SimpleDB (lab5)

Any advantage of returning pairs?

= Flexibility to consider all linear plans
<(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)> <

More Details: /

1. You mainly need to implement “orderJoins(..)” 7{=\\f
>

2. "“CostCard” data structure stores a plan, its cost

and cardinality: you would need to estimate them
3. “PlanCache” stores the table in dyn. Prog: %

Maps a set of LIN  to
a vector of LIN (best plan for the vector), R

its cost, and its cardinality
LIN = LogicalloinNode

June 3, 2020 CSE 444 - Spring 2020




