
1June 3, 2020

Database System Internals

CSE 444 - Spring 2020

Replication

Announcements

§HW5 due tonight

§ Lab4 due on Monday

§ Lab5 due on June 5 / June 11. No late days

§No lab6 (we alternate with Lab5)

CSE 444 - Spring 2020 2June 3, 2020

References

§Ullman Book Chapter 20.6

§Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapter 22.11

June 3, 2020 CSE 444 - Spring 2020 3

CSE 444 - Spring 2020 4

Outline

§Goals of replication

§ Three types of replication
• Synchronous (aka eager) replication
• Asynchronous (aka lazy) replication
• Two-tier replication

June 3, 2020

Goals of Replication

§Goal 1: consistency. Always read latest update
§Goal 2: availability. Every request à a response
§Goal 3: performance. Fast read/writes

June 3, 2020 CSE 444 - Spring 2020 5

Some
requests

Other
requests

Three replicas

Discussion: NoSQL

New problem in the early 2000’s
§ Startup company launces Website backed up by

MySQL, works fine with 50 users
§ Suddenly, they are successful and have 1M users
§MySQL cannot keep up

June 3, 2020 CSE 444 - Spring 2020 6

Discussion: NoSQL

New problem in the early 2000’s
§ Startup company launces Website backed up by

MySQL, works fine with 50 users
§ Suddenly, they are successful and have 1M users
§MySQL cannot keep up
NoSQL:
§Distributed database (replication, partition)
§Give up strong consistency in favor of availability

and performance (as we’ll see discuss next)

June 3, 2020 CSE 444 - Spring 2020 7

Discussion: NoSQL

New problem in the early 2000’s
§ Startup company launces Website backed up by

MySQL, works fine with 50 users
§ Suddenly, they are successful and have 1M users
§MySQL cannot keep up
NoSQL:
§Distributed database (replication, partition)
§Give up strong consistency in favor of availability

and performance (as we’ll see discuss next)
Today: strong consistency is standard requirement

June 3, 2020 CSE 444 - Spring 2020 8

Types of Replication

CSE 444 - Spring 2020 9

Synchronous

Asynchronous

Master Group

June 3, 2020

Synchronous Replication

§ Also called eager replication

§ All updates are applied to all replicas (or to a majority)
as part of a single transaction (need two phase commit)

§ Transactions must acquire global locks
• Nobody can read while we synchronize the replicas

§ Main goal: as if there was only one copy
• Maintain consistency
• Maintain one-copy serializability
• I.e., execution of transactions has same effect as an execution on

a non-replicated db

10CSE 444 - Spring 2020June 3, 2020

Synchronous Replication

Replicas

CSE 444 - Spring 2020 11

start transaction
Write (R1)
Write (R2)
Write (R3)

commit

R1

R2

R3

June 3, 2020

12

Synchronous Master Replication

§ One master for each object holds primary copy
• The “Master” is also called “Primary”
• To update object, transaction must acquire a lock at the master
• Lock at the master is global lock

§ Master propagates updates to replicas synchronously
• Updates propagate as part of the same distributed transaction
• Need to run 2PC at the end

Primary

R1 R2 R3

Update
transactions

Secondaries

Updates

CSE 444 - Spring 2020June 3, 2020

CSE 444 - Spring 2020 13

Crash Failures

§What happens when a secondary crashes?

June 3, 2020

CSE 444 - Spring 2020 14

Crash Failures

§What happens when a secondary crashes?
• Nothing happens
• When secondary recovers, it catches up

June 3, 2020

CSE 444 - Spring 2020 15

Crash Failures

§What happens when a secondary crashes?
• Nothing happens
• When secondary recovers, it catches up

§What happens when the master/primary fails?

June 3, 2020

CSE 444 - Spring 2020 16

Crash Failures

§What happens when a secondary crashes?
• Nothing happens
• When secondary recovers, it catches up

§What happens when the master/primary fails?
• Blocking would hurt availability
• Must chose a new primary: run election

June 3, 2020

CSE 444 - Spring 2020 17

Network Failures

§Network failures can cause trouble...
• Secondaries think that primary failed
• Secondaries elect a new primary
• But primary can still be running
• Now have two primaries!

June 3, 2020

CSE 444 - Spring 2020 18

Majority Consensus

§ To avoid problem, only majority partition can
continue processing at any time

§ In general,
• Whenever a replica fails or recovers...
• …a set of communicating replicas must determine...
• …whether they have a majority before they can

continue

June 3, 2020

Types of Replication

CSE 444 - Spring 2020 19

Synchronous

Asynchronous

Master Group

June 3, 2020

Synchronous Group Replication

§Master-less
• Any node can initiate a transaction!
• Need to gather a number of nodes that agree on a

particular transaction
• Each copy has its own lock

June 3, 2020 CSE 444 - Spring 2020 20

R1 R2 Rn

Write requires locking x copies

Read requires locking s copies

…

Synchronous Group Replication

§With n copies
• Exclusive lock on x copies is global exclusive lock
• Shared lock on s copies is global shared lock
• Must have: 2x > n and s + x > n
• Version numbers serve to identify current copy

June 3, 2020 CSE 444 - Spring 2020 21

R1 R2 Rn

Write requires locking x copies

Read requires locking s copies

…

Synchronous Group Replication

§Majority locking
• s = x = ⎡(n+1)/2⎤ eg: 11 nodes: need 6 locked

• Usually not attractive because reads are slowed down

§ Read-locks-one, write-locks-all
• s=1 and x = n, high read performance
• Reads are very fast

June 3, 2020 CSE 444 - Spring 2020 22

Synchronous Replication Properties

§ Favours consistency over availability
• Only majority partition can process requests
• There appears to be a single copy of the db

§High runtime overhead
• Must lock and update at least majority of replicas
• Two-phase commit
• Runs at pace of slowest replica in quorum
• So overall system is now slower
• Higher deadlock rate (transactions take longer)

June 3, 2020 CSE 444 - Spring 2020 23

Types of Replication

CSE 444 - Spring 2020 24

Synchronous

Asynchronous

Master Group

June 3, 2020

CSE 444 - Spring 2020 25

Asynchronous Replication

§Also called lazy replication
§Also called optimistic replication

§Main goals: availability and performance

§Approach
• One replica updated by original transaction
• Updates propagate asynchronously to other replicas

June 3, 2020

Asynchronous Replication

Replicas

CSE 444 - Spring 2020 26

start transaction
Write (R1)

commit

R1

R2

R3Sometime later
Write (R2)
Write (R3)

June 3, 2020

Asynchronous Master Replication

One master holds primary copy
§ Transactions update primary copy
§ Master asynchronously propagates updates to replicas,

which process them in same order
E.g. through log shipping

§ Ensures single-copy serializability

What happens when master/primary fails?
§ Can lose most recent transactions when primary fails!
§ After electing a new primary, secondaries must agree

who is most up-to-date

June 3, 2020 CSE 444 - Spring 2020 27

Discussion: Log Shipping

A general problem:
§A master operates on a database
§ The DB needs to be replicated to one or several

replicas (e.g. hot stand-by databases)

June 3, 2020 CSE 444 - Spring 2020 28

Discussion: Log Shipping

A general problem:
§A master operates on a database
§ The DB needs to be replicated to one or several

replicas (e.g. hot stand-by databases)
§ Log Shipping Technique

June 3, 2020 CSE 444 - Spring 2020 29

Discussion: Log Shipping

A general problem:
§A master operates on a database
§ The DB needs to be replicated to one or several

replicas (e.g. hot stand-by databases)
§ Log Shipping Technique:

• Master node ships the tail of the log to the replicas
E.g. when it flushes the log tail to disk

• Replicas REDO the log; this is very efficient
• Need very little systems development: we create the

log anyway, and we have the REDO function anyway

June 3, 2020 CSE 444 - Spring 2020 30

Discussion: Log Shipping

A general problem:
§A master operates on a database
§ The DB needs to be replicated to one or several

replicas (e.g. hot stand-by databases)
§ Log Shipping Technique:

• Master node ships the tail of the log to the replicas
E.g. when it flushes the log tail to disk

• Replicas REDO the log; this is very efficient
• Need very little systems development: we create the

log anyway, and we have the REDO function anyway
• Complications due to the need to ”remove” updates of

active transactions (they may later abort)

June 3, 2020 CSE 444 - Spring 2020 31

June 3, 2020 CSE 444 - Spring 2020 32

Types of Replication

Synchronous

Asynchronous

Master Group

Asynchronous Group Replication
§ Also called multi-master
§ Best scheme for availability
§ Cannot guarantee one-copy serializability!

June 3, 2020 CSE 444 - Spring 2020 33

R1 R2
Init: x=1
Update x=2

Init: x=1
Update x=3

Asynchronous Group Replication
§ Cannot guarantee one-copy serializability!
§ Instead guarantee convergence

• Db state does not reflect any serial execution
• But all replicas have the same state

§ Called “Eventual Consistency” = if the DB stops
operations, then eventually all copies are equal

June 3, 2020 CSE 444 - Spring 2020 34

Asynchronous Group Replication
§ Cannot guarantee one-copy serializability!
§ Instead guarantee convergence

• Db state does not reflect any serial execution
• But all replicas have the same state

§ Called “Eventual Consistency” = if the DB stops
operations, then eventually all copies are equal

§ Detect conflicts and reconcile replica states

June 3, 2020 CSE 444 - Spring 2020 35

Asynchronous Group Replication
§ Cannot guarantee one-copy serializability!
§ Instead guarantee convergence

• Db state does not reflect any serial execution
• But all replicas have the same state

§ Called “Eventual Consistency” = if the DB stops
operations, then eventually all copies are equal

§ Detect conflicts and reconcile replica states
§ Reconciliation techniques:

• Most recent timestamp wins
• Site A wins over site B
• But also: user-defined rules, or even manual

June 3, 2020 CSE 444 - Spring 2020 36

June 3, 2020 CSE 444 - Spring 2020 37

Detecting Conflicts Using Timestamps

R1 R2

x=2, Old: T0 New: T1

Init: x=1 at T0
Update at T1 : x=2

Init: x=1 at T0

x=2 at T1x=2 at T1

June 3, 2020 CSE 444 - Spring 2020 38

Detecting Conflicts Using Timestamps

R1 R2

x=2, Old: T0 New: T1

Conflict!

Init: x=1 at T0
Update at T1 : x=2

Init: x=1 at T0

Update at T2: x=3

Conflict! x=3, Old: T0 New: T2

Reconciliation rule
T2 > T1, so x=3

Reconciliation rule
T2 > T1, so x=3

Vector Clocks

§An extension of Multiversion Concurrency Control
(MVCC) to multiple servers

§ Standard MVCC:
each data item X has a timestamp t:

X4, X9, X10, X14, …, Xt

§Vector Clocks:
X has set of [server, timestamp] pairs

X([s1,t1], [s2,t2],…)

CSE 444 - Spring 2020 39June 3, 2020

June 3, 2020 CSE 444 - Spring 2020 40

Vector Clocks
Dynamo:2007

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]

June 3, 2020 CSE 444 - Spring 2020 41

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]
Process and update it locally X = …[something]…

June 3, 2020 CSE 444 - Spring 2020 42

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]
Process and update it locally X = …[something]…
TXN Writes the element X:
§ Request is handled by a site s’

June 3, 2020 CSE 444 - Spring 2020 43

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]
Process and update it locally X = …[something]…
TXN Writes the element X:
§ Request is handled by a site s’
§ If s’ already has X with vector clock VC’,

then first reconcile VC and VC’

June 3, 2020 CSE 444 - Spring 2020 44

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]
Process and update it locally X = …[something]…
TXN Writes the element X:
§ Request is handled by a site s’
§ If s’ already has X with vector clock VC’,

then first reconcile VC and VC’
§ If s’ is not in VC, then add [s,1] to VC

June 3, 2020 CSE 444 - Spring 2020 45

Basic Operations

TXN Reads an element X:
§ Request is handled by a site si…
§…which returns X and its vector clock:

VC = [s1,t1],[s2,t2],…,[sn,tn]
Process and update it locally X = …[something]…
TXN Writes the element X:
§ Request is handled by a site s’
§ If s’ already has X with vector clock VC’,

then first reconcile VC and VC’
§ If s’ is not in VC, then add [s,1] to VC
§ If [s’,t] is in VC, then replace with [s’,t+1]

June 3, 2020 CSE 444 - Spring 2020 46

Conflicts and Reconciliation

A site has two version of X
§X1 with vector clock VC1 and
§X2 with vector clock VC2

If VC1, VC2 have a conflict, then use application
specific reconciliation to compute (X,VC)

If there is no conflict, then:
§X = latest of X1, X2
§VC = VC1 ∪ VC2

June 3, 2020 CSE 444 - Spring 2020 47

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 48

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 49

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 50

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 51

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 52

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 53

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2] No X2 [S1,4],[S2,6],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 54

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2] No X2 [S1,4],[S2,6],[S3,2]

[S1,3],[S2,10] [S1,4],[S2,6],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 55

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2] No X2 [S1,4],[S2,6],[S3,2]

[S1,3],[S2,10] [S1,4],[S2,6],[S3,2] Yes - -

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 56

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2] No X2 [S1,4],[S2,6],[S3,2]

[S1,3],[S2,10] [S1,4],[S2,6],[S3,2] Yes - -

[S1,3],[S2,10] [S1,4],[S2,20],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

CSE 444 - Spring 2020 57

VC1 VC2 Conflict ? X VC

[S1,3] [S1,4] No X2 [S1,4]

[S1,3],[S2,6] [S1,4],[S3,2] Yes - -

[S1,3],[S2,6] [S1,4],[S2,6],[S3,2] No X2 [S1,4],[S2,6],[S3,2]

[S1,3],[S2,10] [S1,4],[S2,6],[S3,2] Yes - -

[S1,3],[S2,10] [S1,4],[S2,20],[S3,2] No X2 [S1,4],[S2,20],[S3,2]

June 3, 2020

Reconcile (X1,VC1), (X2,VC2) to get (X,VC)

Vector Clocks: Conflict or not?

General rule:

§VC1 precedes VC2 if for all [s,t] in VC1 there
exists [s,t’] in VC2 with t ≤ t’

§VC2 precedes VC2 if … [symmetric rule]

§Otherwise, VC1 and VC2 are in conflict

June 3, 2020 CSE 444 - Spring 2020 58

CSE 444 - Spring 2020 59

Asynchronous Group Replication Properties

§ Favours availability over consistency
• Can read and update any replica
• High runtime performance

§ Weak consistency
• Conflicts and reconciliation

June 3, 2020

CSE 444 - Spring 2020 60

Outline

§Goals of replication

§ Three types of replication
• Synchronous (aka eager) replication
• Asynchronous (aka lazy) replication
• Two-tier replication

June 3, 2020

CSE 444 - Spring 2020 61

Two-Tier Replication

§ Benefits of lazy master and lazy group
§ Each object has a master with primary copy
§ When disconnected from master

• Secondary can only run tentative transactions
§ When reconnects to master

• Master reprocesses all tentative transactions
• Checks an acceptance criterion
• If passes, we now have final commit order
• Secondary undoes tentative and redoes committed

June 3, 2020

CSE 444 - Spring 2020 62

Conclusion

§ Replication is a very important problem
• Fault-tolerance (various forms of replication)
• Caching (lazy master)
• Warehousing (lazy master)
• Mobility (two-tier techniques)

§ Replication is complex, but basic techniques
and trade-offs are very well known
• Synchronous or asynchronous replication
• Master or quorum

June 3, 2020

GUARANTEES

SCALABILITY

TRADITIONAL

NEWSQLNOSQL

WEAK
(None/Limited)

STRONG
(ACID)

LOW
(One Node)

HIGH
(Many Nodes)

63
Slide from Andy Pavlo @ CMU

CSE 444 - Spring 2020June 3, 2020

Some Popular NewSQL Systems

§ H-Store
• Research system from Brown U., MIT, CMU, and Yale
• Commercialized as VoltDB

§ Hekaton
• Microsoft
• Fully integrated into SQL Server

§ Hyper
• Hybrid OLTP/OLAP
• Research system from TU Munich. Bought by Tableau

§ Spanner
• Google

CSE 444 - Spring 2020 64June 3, 2020

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

65

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008. Slide from Andy Pavlo @ CMU

TRADITIONAL DBMS:

CSE 444 - Spring 2020June 3, 2020

H-Store Insight

H-Store Key Ideas

§ Main-memory storage
• Avoids disk IO costs / buffer pool costs
• Durability through snapshots + cmd log
• Replication

§ Serial execution
• One database partition per thread on one core
• Avoid overheads related to locking

§ All transactions are stored procedures
• Command logging avoids heavy recovery overheads

§ Avoid distributed transactions
• But when needed, run 2PC

66CSE 444 - Spring 2020June 3, 2020

Transaction
Execution

Ap
pl

ica
tio

n

PARTITIONS

SINGLE-THREADED
EXECUTION ENGINES

Transaction
Result

67

CMD LOGSNAPSHOTS

Procedure Name
Input Parameters

run(phoneNum, contestantId, currentTime) {
result = execute(VoteCount, phoneNum);
if (result > MAX_VOTES) {

return (ERROR);
}
execute(InsertVote, phoneNum,

contestantId,
currentTime);

return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)

FROM votes
WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
VALUES (?, ?, ?);

STORED PROCEDURE

Slide from Andy Pavlo @ CMU
June 3, 2020 CSE 444 - Spring 2020

Some Details

At one node:
§ Data is partitioned
§ One database partition per thread on one core
§ TXN receives a time stamp TS = serialization order
§ TXN is assigned to a “base partition”; if data is need

for other partitions, it sends requests there
§ Partition managers order the requests based on TS.

If conflict: abort, then restart (since stored procedure)
with larger TS

§ When a TXN has been granted locks at all partitions
that it needs, then it can execute

§ If more partitions are needed, then abort/restart

June 3, 2020 CSE 444 - Spring 2020 68

Some Details

Stored procedure
§ TXN = One stored procedure
§ Arbitrary Java code, BUT must be deterministic!

No: call to the systems clock, random number
generators, messages to other threads

§ Have several parameterized queries, i.e. with ‘?’
§ Several invocations of these queries are collected in a
batch, then sent to the engine for execution

§ If the batch requests data from a partition where the
TXN does not have the lock: ABORT/RESTART

§ Commit across multiple partitions: 2PC
§ Command log: write just the procedure name plus

parameters; only for committed TXN

June 3, 2020 CSE 444 - Spring 2020 69

Some Details

Replication
§ Recovery is slow à H-Store uses replication
§ Initially, run Paxos to choose a master node
§During normal operation: TXN’s are executed on

the master node, who sends identical commands
to the replica nodes; results are checked, and
validated if majority, otherwise abort; minority
nodes are considered failed

§When the master fails, run Paxos to elect new
master.

June 3, 2020 CSE 444 - Spring 2020 70

Japanese “American Idol”

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8

H-Store

25x

TXN/SEC CPU CORES

MySQL Postgres

Slide from Andy Pavlo @ CMU
71June 3, 2020 CSE 444 - Spring 2020

Voter Benchmark

Hekaton

§ Focus: DBMS with large main memories and
many core CPUs

§ Integrated with SQL Server

§Key user-visible features
• Simply declare a table “memory resident”
• Hekaton tables are fully durable and transactional,

though non-durable tables are also supported
• Query can touch both Hekaton and regular tables

CSE 444 - Spring 2020 72June 3, 2020

Hekaton Key Details

§ Idea: To increase transaction throughput must
decrease number of instructions / transaction

§Main-memory DBMS
• Optimize indexes for memory-resident data
• Durability by logging and checkpointing records to

external storage
§No partitioning

• Any thread can touch any row of any table
§No locking

• Uses a new MVCC method for isolation

CSE 444 - Spring 2020 73June 3, 2020

Hekaton More Details

§Optimized stored procedures
• Compile statements and stored procedures into

customized, highly efficient machine code

CSE 444 - Spring 2020 74June 3, 2020

Hyper

§Hybrid OLTP and OLAP
§ In-memory data management

• Including optimized indexes for memory-resident data
• Data compression for cold data

§Data-centric code generation
• SQL translated to LLVM

§OLAP separated from OLTP using MVCC
§ Exploits hardware transactional memory
§Data shuffling and distribution optimizations

CSE 444 - Spring 2020 75June 3, 2020

Conclusion

§Many innovations recently in
• Big data analytics
• Transaction processing at very large scale

§Many more problems remain open

§ This course teaches foundations

§ Innovate with an open mind!

CSE 444 - Spring 2020 76June 3, 2020

