fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Intro to Parallel DBMSs

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

ay 20, 2020 CSE 444 - Spring 2020

Scaling Single Query Response Time

= OLAP: Query response time

“Online Analytical Processing”
= Entire parallel system answers one query
= Goal is to improve query runtime

= Use case is analysis of massive datasets

May 20, 2020 CSE 444 - Spring 2020

Volume alone is not an issue

= Relational databases do parallelize easily
* Data partitioning
* Parallel query processing

= SQL is embarrassingly parallel

 We will learn how to do this!

May 20, 2020 CSE 444 - Spring 2020

New workloads are an issue

= Big volumes, small analytics
« OLAP queries: join + group-by + aggregate
» Can be handled by today’s RDBMSs

= Big volumes, big analytics
* More complex Machine Learning
* E.g. click prediction, topic modeling, SYM, k-means
* Active area of research

May 20, 2020 CSE 444 - Spring 2020

Building Our Parallel DBMS

Data model? Relationdl

Scaleup goal? OLAP

May 20, 2020 CSE 444 - Spring 2020

Building Our Parallel DBMS

Data model? Relationdl

Scaleup goal? OLAP

Architecture?

May 20, 2020 CSE 444 - Spring 2020

Shared-Memory Architecture

Interconnection Network

(Motherboard)

Global Memory

May 20, 2020

CSE 444 - Spring 2020

= Shared main memory and

disks

= Your laptop or desktop
uses this architecture

= Expensive to scale

= Easiest to implement on

Microsoft® " I:

SQLServer PostgreSQL

™,

WSQLite MysaolL:

Shared-Disk Architecture

= Only shared disks

= No contention for
memory and high
availability

= Typically 1-10 machines

Interconnection Network .
(SAN + SCSI) ORACLE
DATABASE

May 20, 2020 CSE 444 - Spring 2020

Shared-Nothing Architecture

Interconnection Network

(TCP)

May 20, 2020

CSE 444 - Spring 2020

= Uses cheap, commodity
hardware

= No contention for
memory and high
availability

= Theoretically can scale
infinitely

= Hardest to implement on

teradata.

I ¢
ark’
AN Sp

MySQL. Cluster

Building Our Parallel DBMS

Data model? Relationdl

Scaleup goal? OLAP

Architecture? Shared-Nothing

May 20, 2020 CSE 444 - Spring 2020

Shared-Nothing Execution Basics

= Multiple DBMS instances (= processes) also
called “nodes” execute on machines in a cluster

 One node plays role of the coordinator
« Other nodes play role of workers

= Workers execute queries
* Typically all workers execute the same plan
* Workers can execute multiple queries at the same time

May 20, 2020 CSE 444 - Spring 2020

Shared-Nothing Database

We will assume a system that consists of multiple
commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques

May 20, 2020 CSE 444 - Spring 2020

Option 1: Unpartitioned Table

= Entire table on just one node in the system

= Will bottleneck any query we need to run in
parallel

= We choose Eartitioning scheme to divide rows
among machines

May 20, 2020 CSE 444 - Spring 2020

Option 2: Block Partitioning

Tuples are horizontally (row) partitioned by raw size

with no ordering considered N nodes

L / PR} = KN
L

B(R) < K [B(R,) = K/N

-
- B(Rn) = K/N

May 20, 2020 CSE 444 - Spring 2020

Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges
N nodes

A |
m- Ry, -inf < A<=,

Rz, vi <A <=v,

RN, VN < A < inf

May 20, 2020 CSE 444 - Spring 2020

Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes
N nodes

R], 1= h(A)%N

R2, 2= h(A)%N
AL

RN, 0= h(A)%N

May 20, 2020 CSE 444 - Spring 2020

Skew: The Justin Bieber Effect

* Hashing data to nodes is very good when the
attribute chosen better approximates a uniform
distribution

= Keep in mind: Certain nodes will become
bottlenecks if a poorly chosen attribute is hashed

May 20, 2020 CSE 444 - Spring 2020

Parallel Selection

Assume:
R is block partitioned

SELECT *
FROM R
WHERE A = 2

A ... | A ... | A ... |
] Node 1 2 Node 2 3 ..

2 .. 3 .. 1

Node 3

May 20, 2020 CSE 444 - Spring 2020

Parallel Selection

SELECT *
FROM R
WHERE A = 2

O-A=2 O-A=2 O-A=2

ﬂﬂ/ ﬂﬂ/ ﬂ-/
Node 1 Node 2 Node 3
2 .. 3 .. | I

May 20, 2020 CSE 444 - Spring 2020

Implicit Union

Parallel query plans implicitly union at the end

ﬂﬂ/ ﬂﬂ/ ﬂﬂ/
Node 1 Node 2 Node 3
2 ... 3 .. 1 ...

May 20, 2020 CSE 444 - Spring 2020

Parallel Selection

Compute O-A=V(R)I or 0-v1<A<v2(R)
= On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes 2

A:

May 20, 2020 CSE 444 - Spring 2020

Parallel Selection

Compute O-A=V(R)I or 0-v1<A<v2(R)
= On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes 2

A: B(R) / N block reads on each node

May 20, 2020 CSE 444 - Spring 2020

Partitioned Aggregation

Assume:
R is block partitioned

SELECT R.A, sum(...)
FROM R
GROUP BY R.A

YR.A YR.A YR.A

A ... | A ... | A ... |
] Node 1 2 Node 2 3 ..

2 .. 3 .. 1

Node 3

May 20, 2020 CSE 444 - Spring 2020

Partitioned Aggregation

Assume:
R is block partitioned

SELECT R.A, sum(...)
FROM R
GROUP BY R.A

e -~ N . [NE
2 .. 3 ..

| I 2 .. 3

A ... | A ... | A ... |
] Node 1 2 Node 2 3 ..

2 .. 3 .. 1

Node 3

May 20, 2020 CSE 444 - Spring 2020

Partitioned Aggregation

1. Hash shuffle tuples Assume:

R is block partitioned

SELECT R.A, sum(...)
FROM R
GROUP BY R.A

e -~ N . [NE
| I 2 .. 3 ..

| I 2 .. 3

A ... | A ... | A ... |
] Node 1 2 Node 2 3 ..

2 .. 3 .. 1

Node 3

May 20, 2020 CSE 444 - Spring 2020

Partitioned Aggregation

1. Hash shuffle tuples Assume:

R is block partitioned

SELECT R.A, sum(...)
FROM R
GROUP BY R.A

e - [N
2 .. 3 ..

2 .. Node 2 3 .. Node 3

A ... ERZY
| I

| B Node 1

hash R.A hash R.A hash R.A

A ... | A ... | A ... |
LIS Node 1 2 Node 2 3 .. Node 3
2 ... 3 .. 1

May 20, 2020 CSE 444 - Spring 2020

Partitioned Aggregation

1. Hash shuffle tuples Assume:
] R is block partitioned
2. Local aggregation SELECT R.2, sum (...
FROM R

GROUP BY R.A

e - [N
2 .. 3 ..

2 .. Node 2 3 .. Node 3

A ... ERZY
| I

| B Node 1

hash R.A hash R.A hash R.A

A ... | A ... | A ... |
LIS Node 1 2 Node 2 3 .. Node 3
2 ... 3 .. 1

May 20, 2020 CSE 444 - Spring 2020

Partition Aggregation: Summary

Select A, sum(B) from R group by A

= Case 1: R is partitioned on A
* Do the group-by locally; done.

May 20, 2020 CSE 444 - Spring 2020

Partition Aggregation: Summary

Select A, sum(B) from R group by A

= Case 1: R is partitioned on A
* Do the group-by locally; done.

= Case 2: R is partitioned on something else
 Naive: reshuffle on A, then do as in case 1

May 20, 2020 CSE 444 - Spring 2020

Partition Aggregation: Summary

Select A, sum(B) from R group by A

= Case 1: R is partitioned on A
* Do the group-by locally; done.

= Case 2: R is partitioned on something else
 Naive: reshuffle on A, then do as in case 1

* Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

May 20, 2020 CSE 444 - Spring 2020

Partition Aggregation: Summary

Select A, sum(B) from R group by A

= Case 1: R is partitioned on A
* Do the group-by locally; done.

= Case 2: R is partitioned on something else
 Naive: reshuffle on A, then do as in case 1

* Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

YA sum(B) (RLUR, U--URy)
= YAsum(B) (VA,Sum(B) (Ry) U--U YA,sum(B) (Ry))

May 20, 2020 CSE 444 - Spring 2020

Partition Aggregation: Summary

Select A, sum(B) from R group by A

= Case 1: R is partitioned on A
* Do the group-by locally; done.

= Case 2: R is partitioned on something else

 Naive: reshuffle on A, then do as in case 1 “Combiners”
in MapReduce

* Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

YA sum(B) (RLUR, U--URy)
= YAsum(B) (VA,Sum(B) (Ry) U--U YA,sum(B) (Ry))

May 20, 2020 CSE 444 - Spring 2020

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
= Sum?

= Count?

= Avg?

= Max?

= Median?

May 20, 2020 CSE 444 - Spring 2020

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?

" Sum?

= Count?

= Avg?

= Max?

= Median?

May 20, 2020

Distributive Algebraic Holistic
sum(a;tast...tag)= avg(B) = median(B)
sum(sum(a;+astaz)+ sum(B)/count(B)

sum(aytastag)+
sum(as+agtao))

CSE 444 - Spring 2020

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?

= Sum?
= Count?
- IA\Vg2 Distributive Algebraic Holistic
-) sum(a;tast...tag)= avg(B) = median(B)
MGX ’ sum(sum(a;+as+as)+ sum(B)/count(B)
. sum(aytastag)+
= Median? i batb

Yes for Distributive

Yes for Algebraic (just compute two aggregates)

May 20, 2020

CSE 444 - Spring 2020

Hash-Partitioned Parallel Join

R(A,B) ~p_S(C,D)

May 20, 2020 CSE 444 - Spring 2020

Hash-Partitioned Parallel Join

R(A,B) ~p_S(C,D)

= Step 1: reshuffle R on B; reshuffle S on C

May 20, 2020 CSE 444 - Spring 2020

Hash-Partitioned Parallel Join

R(AIB) NB=CS(CID)
= Step 1: reshuffle R on B; reshuffle S on C

= Step 2: join locally each fragment R;xS;

May 20, 2020 CSE 444 - Spring 2020

Hash-Partitioned Parallel Join

R(A,B) ~p_S(C,D)

Each server computes
the join locally
Reshuffle R on R.A
and S on S.B

May 20, 2020 CSE 444 - Spring 2020

Initially, both R and S are horizontally block partitioned

Hash-Partitioned Parallel Join: Recap

= Step 1
* Every server holdin? any chunk of R partitions its
chunk using a hash tunction h(t.A) mod P

* Every server holding any chunk of S partitions its
chunk using a hash tunction h(t.B) mod P

= Step 2:
* Each server computes the join of its local fragment of R
with its local fragment of S

May 20, 2020 CSE 444 - Spring 2020

Optimization for Small Relations

When joining R and S
“If [R] >>|S]

* Leave R where it is
» Replicate entire S relation across nodes

= Also called a small join or a broadcast join

—

broadcas

May 20, 2020 CSE 444 - Spring 2020

Parallel Query Evaluation

New operator: Shuffle

= Serves to re-shuffle data between processes
 Handles data routing, buffering, and flow control

= Two parts: ShuffleProducer and ShutfleConsumer

= Producer:
* Pulls data from child operator and sends to 7
consumers
* Producer acts as driver for operators below it in query

plan
= Consumer:

* Buffers input data from n producers and makes it
available to operator through getNext() interface

May 20, 2020 CSE 444 - Spring 2020

Parallel Query Execution

ShuffleProducer CollectProducer

ShuffleConsumer

CollectConsumer

May 20, 2020 CSE 444 - Spring 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join atiributes
Assume:
R and S are block partitioned

SELECT *
FROM R, S
WHERE R.A = S.A

MprpAa=s.4 NpAa=s.4 Npa=s.4

May 20, 2020 CSE 444 - Spring 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join atiributes
Assume:
R and S are block partitioned

SELECT *
FROM R, S
WHERE R.A = S.A

MprpAa=s.4 NpAa=s.4 Npa=s.4

May 20, 2020 CSE 444 - Spring 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join atiributes
Assume:
R and S are block partitioned

SELECT *
FROM R, S
WHERE R.A = S.A

MprpAa=s.4 NpAa=s.4 Npa=s.4

May 20, 2020 CSE 444 - Spring 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join atiributes
Assume:

2. Local join R and S are block partitioned

SELECT *
FROM R, S
WHERE R.A = S.A

MprpAa=s.4 NpAa=s.4 Npa=s.4

May 20, 2020 CSE 444 - Spring 2020

Broadcast Join Example .

OR.a-Tf>100 OR.a-Tf>100 | OR.a-Tf>100

broadcas (broadcas broadcas
Machine 1 Machine 2 Machine 3
1/3 of R, S 1/3 of R, S 1/3 of R, S

May 20, 2020 CSE 444 - Spring 2020

SELECT *
FROMR, S, T
WHERE R.b =S.c AND S.d =T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3

1/3ofR, S, T 1/3ofR, S, T 1/3ofR, S, T

May 20, 2020 CSE 444 - Spring 2020 50

Example with Two Joins

OR.a-Tf>100 | OR.a-Tf>100 OR.a-Tf>100
RS =Y RS <7 RS 47

=RiR-NEE-1

h(R.b) ((S.0D (h(T.e)) (Rb) (r(s.oD (h(Te) h(R.b) (h(S.o) (h(T.e)
Machine 1 Machine 2 Machine 3
1/30fR, S, T/ [1/30fR,S,T 1/30fR, S, T

May 20, 2020 CSE 444 - Spring 2020

Example with Two Joins

OR.a-Tf>100 OR.a-Tf>100 OR.a-Tf>100

=) :@i =

broadcast) broadcas} broadcast) broadcas} broadcast) broadcas}

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/3ofR, S, T 1/30fR,S, T

May 20, 2020 CSE 444 - Spring 2020

Speedup and Scaleup

= Consider:
* QUGI')’I yA,sum(C)(R)
* Runtime: dominated by reading chunks from disk

= Speedup: If we double the number of nodes P,
what is the new running time?

= Scaleup: If we double both P and the size of R,
what is the new running time?

May 20, 2020 CSE 444 - Spring 2020

Speedup and Scaleup

» Consider:

* QUGI')’I yA,sum(C)(R)
* Runtime: dominated by reading chunks from disk

= Speedup: If we double the number of nodes P,
what is the new running time?
- Half (each server holds 2 as many chunks)

= Scaleup: If we double both P and the size of R,
what is the new running time?

May 20, 2020 CSE 444 - Spring 2020

Speedup and Scaleup

» Consider:

* QUGI')’I yA,sum(C)(R)
* Runtime: dominated by reading chunks from disk

= Speedup: If we double the number of nodes P,
what is the new running time?
- Half (each server holds 2 as many chunks)

= Scaleup: If we double both P and the size of R,
what is the new running time?

- Same (each server holds the same # of chunks)

May 20, 2020 CSE 444 - Spring 2020

*With one new operator, we've made
SimpleDB an OLAP-ready parallel DBMS!

= Next lecture:
» Skew handling
» Algorithm refinements

May 20, 2020 CSE 444 - Spring 2020

Justin Biebers Re-visited

Skew:

= Some partitions get more input tuples than others
» Range-partition instead of hash
» Some values are very popular: “heavy hitters”
» Selection before join with different selectivities

= Some partitions generate more output tuples than
others

May 20, 2020 CSE 444 - Spring 2020

Some Skew Handling Techniques

If using range partition:
= Ensure each range gets same number of tuples
= Eg.:{1,1,1,2,3,4,5,6}~>[1,2] and [3,6]

= Eg-depth v.s. eg-width histograms

May 20, 2020 CSE 444 - Spring 2020

Some Skew Handling Techniques

Create more partitions than nodes

= And be smart about scheduling the partitions
 E.g. One node ONLY does Justin Biebers

= Note: MapReduce uses this technique

May 20, 2020 CSE 444 - Spring 2020

Some Skew Handling Techniques

= Broadcast join: if the join attribute of R is heavily
skewed, then broadcast S

= If S is also large, then use “skew-join”:

. J?in the heavy hitters in R by broadcasting a fragment
ot S

» Join the light hitters of R using hash-partition with the
rest of S

* (next slide)

May 20, 2020 CSE 444 - Spring 2020

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
» Given R >, S

= Given a heavy hitter value R.A ="V’
(i.e. ‘v’ occurs very many times in R)

= Partition R tuples with value ‘v’ across all nodes
e.g. block-partition, or hash on other attributes

= Replicate S tuples with value ‘v’ to all nodes

= R = the build relation
= S = the probe relation

May 20, 2020 CSE 444 - Spring 2020

