fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[ J— 1 L]
NumberOfTrial 47
[ A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee ] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [ 2 A — s ]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [ Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

ransactions: Recovery (part 1

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 - Spring 2020




Announcements

= Lab 3, part 1 due tonight

= Homework 4 will be posted today

= 544: review #3 due on Friday

May 11, 2020 CSE 444 - Spring 2020




Main textbook (Garcia-Molina)
=Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)

= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and

Engineering, A. Tucker, ed., CRC Press, Boca
Raton, 1997.

May 11, 2020 CSE 444 - Spring 2020




Transaction Management

Two parts:

= Concurrency control:  ACID
= Recovery from crashes: ACID

We already discussed concurrency control

You are implementing locking in lab3

Today, we start recovery

May 11, 2020



System Crash

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

—

UPDATE Account2
SET balance = balance + 500
COMMIT

May 11, 2020 CSE 444 - Spring 2020




Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Remote backups or

Data center failures .
replicas

System failures: DATABASE
e.g. power RECOVERY

May 11, 2020 CSE 444 - Spring 2020




System Failures

» Each transaction has internal state

= When system crashes, internal state is lost
* Don’t know which parts executed and which didn’t
* Need ability to undo and redo

May 11, 2020



Butfer Manager Review

READ
WRITE Page requests from higher-level code
| Files and access methods
Buffer pool [ Buffer pool manager
Disk page
Pa9 Main
Free frame memory
INPUT | choice of frame dictated
OUTPUT by replacement policy

Disk = collection i 1 |
of blocks page corresponds

1 disk block
Data must be in RAM for DBMS to operate on it! to 1 disk bloc
Buffer pool = table of <frame#, pageid> pairs

May 11, 2020 CSE 444 - Spring 2020



Butfer Manager Review

= Enables higher layers of the DBMS to assume that
needed data is in main memory

= Caches data in memory. Problems when crash
occurs:

1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk

May 11, 2020



Transactions

= Assumption: the database is composed of
elements.

» 1 element can be either:

* 1 page = physical logging
* 1 record = logical logging

= In Lab 4 we use page-level elements

May 11, 2020 CSE 444 - Spring 2020




Primitive Operations of Transactions

« READ(X, 1)

* copy element X to transaction local variable t

« WRITE(X, )

* copy transaction local variable t to element X

« INPUT(X)

* read element X to memory buffer

« OUTPUT(X)

« write element X to disk

May 11, 2020 CSE 444 - Spring 2020




Running Example

BEGIN TRANSACTION
READ(A,t);

b:=1*2;

WRITE(A,1);

READ(B,t);

b:=1*2;

WRITE(B,t)

COMMIT;

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

May 11, 2020 CSE 444 - Spring 2020



Running Example

Will look at various crash scenarios
What behavior do we want in each case?

BEGIN TRANSACTION
READ(A,t);
t=1*2; Initially, A=B=8.
WRITE(A/t); Atomicity requires that either
. DT it d A=B=16,
READ(B't)' 22; T ggrensmnost E(]:rc])mmit and AZrB=8.
b:=1*2;
WRITE(B, 1)
COMMIT;

May 11, 2020 CSE 444 - Spring 2020



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

14



Transaction

Buffer pool

INPUT(A)

Mem A Mem B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

15



Transaction

Buffer pool

INPUT(A)

Mem A Mem B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

16



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

c (0O | 0O

| G| 0|0

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

| V4



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

c (0O (OO | OO | OO

| G| 0|0 | O

READ(B,t)

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

18



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

co (OO (0O |00 | OO | OO

| 0| 0O |0 | 0| 0O

t:=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

19



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

C (0O (0O |00 | 0| CO| O

| 0|00 | 0| 0|0

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

20



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO |0 |0 |0C| O

OUTPUT(A)

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

2]



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

OUTPUT(A)

-
(o))

| O[O0 |CO|0CO|[OC|0C| 0|0

OUTPUT(B)

COMMIT

May 11, 2020

CSE 444 - Spring 2020

22



Transaction

Buffer pool

Disk

INPUT(A)

Mem A Mem B

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

OUTPUT(A)

RN
(@)

| O[O0 |CO|0CO|[OC|0C| 0|0

OUTPUT(B)

RN
(@))

-
o

COMMIT

May 11, 2020

CSE 444 - Spring 2020

23



' Is this bad ? _

Action
INPUT(A)
READ(A,})
t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 11, 2020 CSE 444 - Spring 2020

O |00 (00|00 |00 | 0| CO | OC
co |0 (0 [0 |0 | 0| C | C

RN
(@)
(00)

0%
.
o]
(7))
=r

RN
o
RN
(@)}




Is this bad ? Yes it's bad: A=16, B=8....

Action
INPUT(A)
READ(A,})
t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 11, 2020 CSE 444 - Spring 2020

O |00 (00|00 |00 | 0| CO | OC
co |0 (0 [0 |0 | 0| C | C

RN
(@)
(00)

O%
.
o]
(7))
=r

RN
o
RN
(@)}




' Is this bad ? _

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 11, 2020 CSE 444 - Spring 2020

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO|0CO|[OC|0C| 0|0

RN
(@)

RN
o
RN
(@)}

Crash!




Is this bad ? Yes it’s bad: A=B=16, but not committed

Action t MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2
WRITE(A,1)
INPUT(B)
READ(B,t)
t:=t*2
WRITE(B,t)
OUTPUT(A)
OUTPUT(B)
COMMIT

May 11, 2020 CSE 444 - Spring 2020

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO|0CO|[OC|0C| 0|0

RN
(@)

RN
o
RN
(@)}

Crash!




' Is this bad ? _

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO |0 |0 |0C| O

OUTPUT(A)

RN
(@)

OUTPUT(B)

RN
(@))

COMMIT

May 11, 2020

CSE 444 - Spring 2020

28



' Is this bad ? _ No: that's OK _

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO |0 |0 |0C| O

OUTPUT(A)

RN
(@)

OUTPUT(B)

RN
(@))

COMMIT

May 11, 2020

CSE 444 - Spring 2020

29



Discussion

= The problem seems to happen because we

allowed OUTPUT before COMMIT

= This is called a STEAL policy: we are steqlln% a
good value on disk in order to output a possibly
dirty value

= What if we enforce a NO-STEAL policy?

May 11, 2020 CSE 444 - Spring 2020




OUTPUT can also happen after COMMIT

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A.1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,1)

O |00 (00|00 |00 | 0| CO | OC

| O[O0 |CO |0 |0 |0C| O

COMMIT

OUTPUT(A)

16

OUTPUT(B)

May 11, 2020

CSE 444 - Spring 2020

16

16

31



OUTPUT can also happen after COMMIT

Action Disk A Disk B
INPUT(A) 8 8
READ(A 1) 8 8

b=t 8 8
WRITE(A 1) 8 8
INPUT(B) 8 8
READ(B, 1) 8 8
b=t 8 8
WRITE(B 1) 8 8
COMMIT
OUTPUT(A) 16 8 m
OUTPUT(B) 16 16

May 11, 2020 CSE 444 - Spring 2020 Ky



. OUTPUT can also happen after COMMIT - This is bad -

Action Disk A Disk B
INPUT(A) 8 8
READ(A 1) 8 8

b=t 8 8
WRITE(A 1) 8 8
INPUT(B) 8 8
READ(B, 1) 8 8
b=t 8 8
WRITE(B 1) 8 8
COMMIT
OUTPUT(A) 16 8 m
OUTPUT(B) 16 16

May 11, 2020 CSE 444 - Spring 2020 KK]



Discussion

= The problem now arises because we allowed
OUTPUT to be postpone until after COMMIT

= This is called a NO-FORCE policy

= We have already looked at the FORCE policy

May 11, 2020 CSE 444 - Spring 2020




Atomic Transactions

= FORCE or NO-FORCE

« Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

 Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk?

May 11, 2020 CSE 444 - Spring 2020




Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

May 11, 2020 CSE 444 - Spring 2020




Force/No-steal (most strict)

= FORCE: Pages of committed transactions must be
forced to disk before commit

= NO-STEAL: Pages of uncommitted transactions
cannot be written to disk

To ensure atomicity:
* Perform all OUTPUTs exactly at COMMIT time
* Worse for performance

May 11, 2020 CSE 444 - Spring 2020




No-Force/Steal  (most strict)

= NO-FORCE: Pages of committed transactions
may still be left in the buffer pool if needed

= STEAL: Pages of uncommitted transactions may
be written to disk if needed

May 11, 2020 CSE 444 - Spring 2020




No-Force/Steal  (most strict)

= NO-FORCE: Pages of committed transactions
may still be left in the buffer pool if needed

= STEAL: Pages of uncommitted transactions may
be written to disk if needed

To ensure atomicity:
« Use a Write Ahead Log (WAL)

* This is the topic of our next few lectures...

May 11, 2020 CSE 444 - Spring 2020




Write-Ahead Log (WAL)

The Log: append-only file containing log records
= Records every single action of every TXN
= Forces log entries to disk as needed

= After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

May 11, 2020 CSE 444 - Spring 2020




Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

May 11, 2020 CSE 444 - Spring 2020




“UNDQO” Log

FORCE and STEAL




Undo Logging

Log records
= <START T>

* transaction T has begun

« <COMMIT T>

* T has committed

« <ABORT T>
* T has aborted

= <T,X,v>
* T has updated element X, and its old value was v
* Idempotent, physical log records

May 11, 2020 CSE 444 - Spring 2020




Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

May 11, 2020

CSE 444 - Spring 2020




144 D

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8 b
Crash!
OUTPUT(B) 16 16 16 16 16 %
COMMIT <COMMIT T>

WH

AT DO WE DO ?

CSE 444 - Spring 2020



144 D

W

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 8 b
Crash !
OUTPUT(B) 16 16 16 16 16 EM
COMMIT <COMMIT T>

HAT DO WE DO ?

" — = We UNDO by setting B=8 and A=8 7



Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COW
Crash !

WHAT DO WE DO ?

CSE 444 - Spring 2020

47




Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

“COMMIL g

WHAT DO WE DO ? _ Nothing: log contains COMMIT _  Crash!




After Crash

* This is all we see (for example):

Disk A |Disk B <START T>
8 16 <T,A,8>
<T,B,8>

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |Disk B <START T>
8 16 <T,A,8>
<T,B,8>

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |Disk B <START T>
8 16 <T,A,8>
<T,B,8>

 \What direction?

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |Disk B <START T>
8 16 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |[Disk B <START T>
8 16 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |Disk B <START T>
8 . <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

Disk A |Disk B <START T>
8 I <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 11, 2020 CSE 444 - Spring 2020




After Crash

* This is all we see (for example):
* Need to step through the log

8 8 <T,A8>

<T,B,8>

Disk A |[Disk B <START T> ]

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

May 11, 2020 CSE 444 - Spring 2020




After Crash

* |f we see NO Commit statement:
* We UNDO both changes: A=8, B=8

* The transaction is atomic, since none of its
actions have been executed

*|In we see that T has a Commit statement

* We don’t undo anything

 The transaction is atomic, since both it’s actions
have been executed

May 11, 2020 CSE 444 - Spring 2020




Recovery with Undo Log

After system’s crash, run recovery manager

» Decide for each transaction T whether it is
completed or not

« <START T>....<COMMIT T>.... =yes
« <START T>....<ABORT T>....... = yes
« <START T>...covniiiiiiiiienn, = no

= Undo all modifications by incomplete transactions

May 11, 2020



Recovery with Undo Log

Recovery manager:

Read log from the end:
Cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed
then write X=v to disk

else ignore
<START T>: ignore

May 11, 2020



Recovery with Undo Log

May 11, 2020

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second crash during
recovery?

CSE 444 - Spring 2020



Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>
Question 2:
A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4, v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>

May 11, 2020 CSE 444 - Spring 2020




Recovery with Undo Log

May 11, 2020

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:

What happens if second crash during
recovery?

No problem! Log records are
idempotent. Can reapply.

CSE 444 - Spring 2020



Act When must we force Disk A | Disk B | UNDO Log
log pages to disk ? <START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8 <T,A 8>
INPUT(B) 16 16 8 8 8
READBH | 8 16 8 8 8 ),
-
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) |16 16 16 16 8
OUTRUT(B) 1 16 16 16 16 16
COMMIT <COMMIT T>

May 11, 2020 CSE 444 - Spring 2020




Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 { <T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 8 8 8
WRITE(B,!) 16 16 8 8 { <T,B,8> >
(OUTPUT(@ 16 16 | 16— 16 8
W 16 16 16 16
commiT | FORCE 4(:(1\4@

RULES: log entry before OUTPUT before COMMIT



Undo-Logging Rules

U1l: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

= Hence: OUTPUTs are done early, before the

transaction commits
FORCE

May 11, 2020 CSE 444 - Spring 2020




Checkpointing

Checkpoint the database periodically
During a checkpoint:

= Stop accepting new transactions

= Wait until all current transactions complete
= Flush log to disk

= Write a <CKPT> log record, flush
» Resume transactions

May 11, 2020 CSE 444 - Spring 2020




Undo Recovery with Checkpointinc

other transactions:
> all have completed
no need to undo

<T9,X9,v9>

During recovery, (all completed)
Can stop at first + | <CKPT> 7
<CKPT> <START T2> \
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

May 11, 2020 CSE 444 - Spring 2020




Nonquiescent Checkpointing

= Problem with checkpointing: database freezes
during checkpoint

= Would like to checkpoint while database is
operational

= Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

May 11, 2020 CSE 444 - Spring 2020




Nonquiescent Checkpointing

« Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are dll active transactions.

= Flush log to disk
= Continue normal operation

= When all of T1,...,Tk have completed, write
<END CKPT>

= Flush log to disk

May 11, 2020 CSE 444 - Spring 2020




Undo with Nonquiescent Checkpointing

>earlier transactions plus

If we crash here: T4,T5, 16
Need to read
Back to start of <START CKPT T4, T5, T6> |~/
T4,T5, T6 \
— | 4,75, T6, plus
-<.I.END CKPT> later transactions

If we crash here: )

Need to read only to
<START CKPTT4.> —— ..

* later transactions




Implementing ROLLBACK

» Recall: a transaction can end in COMMIT or

ROLLBACK
= |dea: use the undo-log to implement ROLLBACK

" How ¢
* LSN = Log Sequence Number
* Log entries for the same transaction are linked, using

the LSN’s

 Read log in reverse, using LSN pointers

May 11, 2020 CSE 444 - Spring 2020




|mp|emnn|'inn POIIRACK

" Req

RO
" |de

= Ho

<T9,X9,v9>

(all completed)
<CKPT>
<START T2
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T12,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

CK

sing

May 11, 2020

CSE 444 - Spring 2020



REDO

NO-FORCE and NO-STEAL

May 11, 2020 CSE 444 - Spring 2020




Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

May 11, 2020

CSE 444 - Spring 2020




Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8§ -
OUTPUT(B)| 16 16 16 16 16

May 11, 2020 CSE 444 - Spring 2020




Is this bad ? Yes, it's bad: A=16, B=8

Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 sf -
OUTPUT(B)| 16 16 16 16 16

May 11, 2020 CSE 444 - Spring 2020




Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT SX Crash !
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘

May 11, 2020 CSE 444 - Spring 2020




. |s this bad ? _ Yes, it's bad: lost update I

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT SX Crash !
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘

May 11, 2020 CSE 444 - Spring 2020




Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B

READ(At) 8 8 8 8
t=t2 16 8 8 8
WRITEAY | 16 16 8 8
READ(B,) 8 16 8 8 8
t=t2 16 16 8 8 8

WRITEBH | 16 16 16 8 8

COMMIT 9
ouTPUTA)| 16 16 16 16 8
ouTtPuT(B)| 16 16 16 16 16

May 11, 2020

CSE 444 - Spring 2020



Is this bad *? No: that's OK.

Action t Mem A | Mem B | Disk A | Disk B

READ(At) 8 8 8 8
t=t2 16 8 8 8
WRITEAY | 16 16 8 8
READ(B,) 8 16 8 8 8
t=t2 16 16 8 8 8

WRITEBH | 16 16 16 8 8

COMMIT 9
ouTPUTA)| 16 16 16 16 8
ouTtPuT(B)| 16 16 16 16 16

May 11, 2020

CSE 444 - Spring 2020



