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Database System Internals

CSE 444 - Spring 2020

Concurrency Control - Locking



Announcement

We cancel the quiz!
Reason:

§ Learning is difficult during lockdown

§This course is intense: 1 hw or lab each week

§The quiz only adds to the stress

§ It had a low weight anyway...
… so let’s just cancel it.
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View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?
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View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

May 1, 2020
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View Equivalence

§A serializable schedule need not be conflict 
serializable, even under the “worst case update” 
assumption
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w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent,  but not conflict-equivalent
May 1, 2020
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View Equivalence
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T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
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View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S, 

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S, 
then T writes the final value of A in S’
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View-Serializability

A schedule is view serializable if it is view 
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable, 

then it is also view serializable
• But not vice versa
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Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager 
undoes its updates

§But some of its updates may have affected other 
transactions !

CSE 444 - Spring 2020 9May 1, 2020



Schedules with Aborted Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?
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Schedules with Aborted Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?
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Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all 

transactions that have written elements read by T 
have already committed
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
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Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?
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Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?
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Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?
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Abort



Recoverable Schedules
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T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?
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Abort

Abort

Abort



Cascading Aborts

§ If a transaction T aborts, then we need to abort any 
other transaction T’ that has read an element 
written by T

§A schedule avoids cascading aborts if whenever a 
transaction reads an element, the transaction that 
has last written it has already committed.
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We base our locking scheme on this rule!

May 1, 2020



Avoiding Cascading Aborts
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T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .
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Without cascading abortsWith cascading aborts
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Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading 

deletes
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Scheduler

§ The scheduler:
§Module that schedules the transaction’s actions, 

ensuring serializability

§ Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation
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Pessimistic Scheduler

Simple idea:

§ Each element has a unique lock

§ Each transaction must first acquire the lock before 
reading/writing that element

§ If the lock is taken by another transaction, then 
wait

§ The transaction must release the lock(s)
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Notation
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Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A
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A Non-Serializable Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

May 1, 2020



Example
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T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

CSE 444 - Spring 2020
Scheduler has ensured a conflict-serializable schedule

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule
May 1, 2020
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But…

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?



Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must 
precede all unlock requests

§ This ensures conflict serializability !  (will prove this 
shortly)
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Example: 2PL transactions
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T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable
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Example with Multiple Transactions

Equivalent to each transaction executing entirely 
the moment it enters shrinking phase
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T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

May 1, 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

CSE 444 - Spring 2020May 1, 2020



Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

May 1, 2020 CSE 444 - Spring 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

May 1, 2020 CSE 444 - Spring 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

May 1, 2020 CSE 444 - Spring 2020



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction
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Problem: Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); 
Commit

Abort



Strict 2PL

§ Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts
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Strict 2PL

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit



Summary of Strict 2PL

Ensures:

§Serializability

§Recoverability

§Avoids cascading aborts
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The Locking Scheduler

Task 1: -- act on behalf of the transaction
Add lock/unlock requests to transactions

§ Examine all READ(A) or WRITE(A) actions

§Add appropriate lock requests

§On COMMIT/ROLLBACK release all locks

§ Ensures Strict 2PL !
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The Locking Scheduler
Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !

§ When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

§ When lock is released reactivate transaction from its wait list

§ When a transaction aborts, release all its locks

§ Check for deadlocks occasionally
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Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

47

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - Spring 2020May 1, 2020



Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks
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Deadlocks

§Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T1

§Deadlock detection
• Timeouts
• Wait-for graph

§Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting
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Lock Performance
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Th
ro

ug
hp

ut

# Active Transactions

thrashing

Why ?
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Phantom Problem

§So far we have assumed the database to be a 
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom 
problem appears
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Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



CSE 544 - Winter 2020 53

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

No: T1 sees a “phantom” product A3

Suppose there are two blue products, A1, A2:



Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’ But this is conflict-serializabel

Suppose there are two blue products, A1, A2:



Phantom Problem

§A “phantom” is a tuple that is 
invisible during part of a transaction execution 
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !
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Dealing With Phantoms

§ Lock the entire table
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks 

• A lock on an arbitrary predicate
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Dealing with phantoms is expensive !



Discussion

We always want a serializable schedule
Strict 2PL guarantees conflict serializability

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database:
• Need both conflict serializability and handling of 

phantoms to ensure serializability

May 1, 2020 CSE 444 - Spring 2020 59


