
1May 1, 2020

Database System Internals

CSE 444 - Spring 2020

Concurrency Control - Locking

Announcement

We cancel the quiz!
Reason:

§ Learning is difficult during lockdown

§This course is intense: 1 hw or lab each week

§The quiz only adds to the stress

§ It had a low weight anyway...
… so let’s just cancel it.

May 1, 2020 CSE 444 - Spring 2020 2

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 3

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

May 1, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 4

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

May 1, 2020

1 2 3
Y

X

Y

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 5

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent
May 1, 2020

1 2 3
Y

X

Y

View Equivalence

CSE 444 - Spring 2020 6

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
May 1, 2020

View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S,

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S,
then T writes the final value of A in S’

CSE 444 - Spring 2020 7May 1, 2020

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable,

then it is also view serializable
• But not vice versa

CSE 444 - Spring 2020 8May 1, 2020

Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager
undoes its updates

§But some of its updates may have affected other
transactions !

CSE 444 - Spring 2020 9May 1, 2020

Schedules with Aborted Transactions

CSE 444 - Spring 2020 10

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

May 1, 2020

Schedules with Aborted Transactions

CSE 444 - Spring 2020 11

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

May 1, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Spring 2020 12May 1, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Spring 2020 13May 1, 2020

Recoverable Schedules

14

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

CSE 444 - Spring 2020May 1, 2020

Recoverable Schedules

15

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

CSE 444 - Spring 2020May 1, 2020

Recoverable Schedules

16

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable
CSE 444 - Spring 2020May 1, 2020

Recoverable Schedules

17

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable
CSE 444 - Spring 2020May 1, 2020

Recoverable Schedules

18

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Spring 2020May 1, 2020

Recoverable Schedules

19

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

May 1, 2020

Recoverable Schedules

20

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

May 1, 2020

Abort

Recoverable Schedules

21

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

May 1, 2020

Abort

Abort

Recoverable Schedules

22

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

May 1, 2020

Abort

Abort

Abort

Cascading Aborts

§ If a transaction T aborts, then we need to abort any
other transaction T’ that has read an element
written by T

§A schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that
has last written it has already committed.

CSE 444 - Spring 2020 23

We base our locking scheme on this rule!

May 1, 2020

Avoiding Cascading Aborts

24

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Spring 2020

Without cascading abortsWith cascading aborts

May 1, 2020

Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading

deletes

CSE 444 - Spring 2020 25May 1, 2020

Scheduler

§ The scheduler:
§Module that schedules the transaction’s actions,

ensuring serializability

§ Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Spring 2020 26May 1, 2020

Pessimistic Scheduler

Simple idea:

§ Each element has a unique lock

§ Each transaction must first acquire the lock before
reading/writing that element

§ If the lock is taken by another transaction, then
wait

§ The transaction must release the lock(s)

May 1, 2020 CSE 444 - Spring 2020 27

Notation

CSE 444 - Spring 2020 28

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

May 1, 2020

A Non-Serializable Schedule

CSE 444 - Spring 2020 29

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

May 1, 2020

Example

30

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Spring 2020
Scheduler has ensured a conflict-serializable schedule

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule
May 1, 2020

May 1, 2020 CSE 444 - Spring 2020 31

But…

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must
precede all unlock requests

§ This ensures conflict serializability ! (will prove this
shortly)

May 1, 2020 CSE 444 - Spring 2020 32

Example: 2PL transactions

33

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable

May 1, 2020 CSE 444 - Spring 2020

Example with Multiple Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

CSE 444 - Spring 2020 34

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

May 1, 2020

Two Phase Locking (2PL)

35

Theorem: 2PL ensures conflict serializability

CSE 444 - Spring 2020May 1, 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Spring 2020 36May 1, 2020

Two Phase Locking (2PL)

37

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

38

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

39

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

40

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

May 1, 2020 CSE 444 - Spring 2020

May 1, 2020 CSE 444 - Spring 2020 41

Problem: Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

Strict 2PL

§ Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts

May 1, 2020 CSE 444 - Spring 2020 42

May 1, 2020 CSE 444 - Spring 2020 43

Strict 2PL

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit

Summary of Strict 2PL

Ensures:

§Serializability

§Recoverability

§Avoids cascading aborts

CSE 444 - Spring 2020 44May 1, 2020

The Locking Scheduler

Task 1: -- act on behalf of the transaction
Add lock/unlock requests to transactions

§ Examine all READ(A) or WRITE(A) actions

§Add appropriate lock requests

§On COMMIT/ROLLBACK release all locks

§ Ensures Strict 2PL !

CSE 444 - Spring 2020 45May 1, 2020

The Locking Scheduler
Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !

§ When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

§ When lock is released reactivate transaction from its wait list

§ When a transaction aborts, release all its locks

§ Check for deadlocks occasionally

CSE 444 - Spring 2020 46May 1, 2020

Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

47

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - Spring 2020May 1, 2020

Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks

CSE 444 - Spring 2020 48May 1, 2020

Deadlocks

§Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T1

§Deadlock detection
• Timeouts
• Wait-for graph

§Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting

CSE 444 - Spring 2020 49May 1, 2020

Lock Performance

CSE 444 - Spring 2020 50

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

May 1, 2020

Phantom Problem

§So far we have assumed the database to be a
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom
problem appears

CSE 544 - Winter 2020 51

CSE 544 - Winter 2020 52

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSE 544 - Winter 2020 53

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

No: T1 sees a “phantom” product A3

Suppose there are two blue products, A1, A2:

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’ But this is conflict-serializabel

Suppose there are two blue products, A1, A2:

Phantom Problem

§A “phantom” is a tuple that is
invisible during part of a transaction execution
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !

CSE 444 - Spring 2020 57May 1, 2020

Dealing With Phantoms

§ Lock the entire table
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks

• A lock on an arbitrary predicate

CSE 544 - Winter 2020 58

Dealing with phantoms is expensive !

Discussion

We always want a serializable schedule
Strict 2PL guarantees conflict serializability

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database:
• Need both conflict serializability and handling of

phantoms to ensure serializability

May 1, 2020 CSE 444 - Spring 2020 59

