fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Concurrency Control - Locking

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 - Spring 2020

Announcement

We cancel the quiz!
Reason:

= Learning is difficult during lockdown
=This course is intense: 1 hw or lab each week
=The quiz only adds to the stress

= |t had a low weight anyway..-. ™
et’s just cancel i

May 1, 2020 CSE 444 - Spring 2020

View Equivalence

= A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

W1(X); Wo(X); Wo(Y); wy(Y); wa(Y);

Is this schedule conflict-serializable ?

May 1, 2020

View Equivalence

= A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

Y
1)(’\2/Y’@

W1(X); Wo(X); Wo(Y); wy(Y); wa(Y);

Is this schedule conflict-serializable ? No. ..

May 1, 2020

View Equivalence

= A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

Y
Y

W1(X); Wo(X); Wo(Y); wy(Y); wa(Y);

1

W1(X); W4 (Y); Wo(X); Wy (Y); ws(Y);

Equivalent, but not conflict-equivalent

View Equivalence

May 1, 2020

View Equivalence

Two schedules S, S’ are view equivalent if:

 If T reads an initial value of Ain S,
then T reads the initial value of Ain S’

« If T reads a value of Awritten by T in S,
then T reads a value of Awritten by T in &’

o If T writes the final value of Ain S,
then T writes the final value of Ain §’

May 1, 2020

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:

* |If a schedule is conflict serializable,
then it is also view serializable

« But not vice versa

May 1, 2020

Schedules with Aborted Transactions

* \When a transaction aborts, the recovery manager
undoes its updates

» But some of its updates may have affected other
transactions !

May 1, 2020

Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
Commit

Abort

May 1, 2020

Schedules with Aborted Transactions

T1 T2

R(A)

W(A)
R(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:
 |tis conflict-serializable, and

 Whenever a transaction T commits, all
transactions that have written elements read by T

have already committed

May 1, 2020

Recoverable Schedules

A schedule is recoverable if:
 |tis conflict-serializable, and

 Whenever a transaction T commits, all
transactions that have written elements read by T

have already committed

May 1, 2020

Recoverable Schedules

T1 T2 T1 T2

R(A) R(A)

W(A) W(A)
R(A) R(A)
W(A) W(A)
R(B) R(B)
W(B) W(B)
Commit Commit

? Commit

May 1, 2020

Recoverable Schedules

T1 T2 T1 T2

R(£ R(A)
Wea) W(A

R@ R(A)

VV{A W(A)

R(B) R(B)

W(B) W(B)

Commit Commit

Commit

May 1, 2020

Recoverable Schedules

T1 T2
R(B)
W(B)
Commit

Nonrecoverable

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

Commit
Commit

May 1, 2020

Recoverable Schedules

T1 12 T1 T2
R(Z STA
WeR) (W)
\I/?V((%)) \I/?\/((Eé))
) Commit S

Nonrecoverable

May 1, 2020

Recoverable Schedules

T1 12 T1 T2
R(Z STA
WeR) (W)
\I/?V((%)) \I/?\/((Eé))
) Commit S

Nonrecoverable Recoverable

May 1, 2020

Recoverable Schedules

T1 T2 T3 T4
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Recoverable Schedules

T1 T2 T3 T4
R(A)
W(A)
(A)
Abort
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Recoverable Schedules

T1 T2 T3 T4

R(A)
X

W(A)
W(B)

Abort

R(B)
X Abort
W(C)
R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Recoverable Schedules

T1 T2 T3 T4

R(A)
X

W(A)
W(B)

Abort

%
W(C)

Abort

R(C)
X Abort
W(D)
Abort
MMM—

Cascading Aborts

* |f a transaction T aborts, then we need to abort any
other transaction T’ that has read an element
written by T

» A schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that
has last written it has already committed.

We base our locking scheme on this rule!

May 1, 2020

Avoiding Cascading Aborts

T1 T2 T1 T2
W) WA
R(A) Commit
W(A) R(A)
R(B) W(A)
W(B) R((Eé))
W

With cascading aborts Without cascading aborts

May 1, 2020

Serializability Recoverability
= Serial

» Serializable » Recoverable

= Conflict serializable » Avoids cascading

= View serializable deletes

Scheduler

= The scheduler:

= Module that schedules the transaction’s actions,
ensuring serializability

* Two main approaches

 Pessimistic: locks
« Optimistic: timestamps, multi-version, validation

May 1, 2020

Pessimistic Scheduler

Simple idea:
= Each element has a unique lock

= Each transaction must first acquire the lock before
reading/writing that element

= If the lock is taken by another transaction, then
wait

= The transaction must release the lock(s)

May 1, 2020

L(A) = transaction T, acquires lock for element A

U.(A) = transaction T. releases lock for element A

May 1, 2020

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S :=8%2
WRITE(A,s)
READ(B,s)
S :=8%2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

May 1, 2020

Example
T1 T2

L,(A); READ(A, 1)
t := t+100

WRITE(A, t); U,(A); L(B)
L,(A): READ(A,s)

S :=8%2
WRITE(A,s); U,(A);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B):
...GRANTED: READ(B,s)

S :=8%2
WRITE(B,s): U,(B);

15

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A);
L,(A); READ(A,s)
S :=8%2
WRITE(A,s); U,(A);
L,(B); READ(B,s)
S :=8%2
WRITE(B,s); U,(B);

L,(B); READ(B, t)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !!'! What's wrong ?

May 1, 2020

Two Phase Locking (2PL)

The 2PL rule:

= In every transaction, all lock requests must
precede all unlock requests

* This ensures conflict serializability ! (will prove this
shortly)

May 1, 2020

Example: 2PL transactions

T1 T2
L1(A); L4(B); READ(A, t)

t :=t+100

WRITE(A, t); U,(A)

L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S :=8*2
Now it is conflict-serializable WRITE(B,s); U,(A); U,(B);

May 1, 2020 CSE 444 - Spring 2020

Example with Multiple Transactions

Growing
phase

Shrinking |

phase

T1

12

Unlocks second so

for T3

perhaps was waiting

T3

Unlocks first
Was not waiting
—1for anyone

T4

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

May 1, 2020

CSE 444 - Spring 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

May 1, 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C

T1
A B

May 1, 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then || Then there is the

there exists a cycle following temporal
In the precedence graph. || cycle in the schedule:
C
T1

A B

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C
T1

A B

Then there is the

following temporal
cycle in the schedule:

Ui(A)=>Ly(A) why?

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C
T1

A B

Then there is the
following temporal
cycle in the schedule:
Ui(A)=2Lo(A)
L,(A)2>U,(B) why?

May 1, 2020 CSE 444 - Spring 2020

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C
T1

A B

May 1, 2020 CSE 444 - Spring 2020

Then there is the
following temporal
cycle in the schedule:
Ui(A)=2Lo(A)
Lz(AHU (B)
U,(B)=>L5(B)
L3(B)9U (C
U;3(C)=>L4(C
(

)
)
L,(C)2>U4(A) Contradiction

Problem: Non-recoverable Schedule

T1 T2
L1(A); L4(B); READ(A, 1)

t:=t+100

WRITE(A, t); U4(A)

L,(A): READ(A,s)

S :=8*2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S :=8%2
WRITE(B,s); U,(A); U,(B):;
Commit

Abort

May 1, 2020

Strict 2PL

= Strict 2PL: All locks held by a transaction are
released when the transaction is completed,;

release happens at the time of COMMIT or
ROLLBACK

= Schedule is recoverable
= Schedule avoids cascading aborts

May 1, 2020

Strict 2PL

T1 T2
[,(A); READ(A)

A :=A+100

WRITE(A);

Lo(A); DENIED...

L4(B); READ(B)

B :=B+100

WRITE(B);

U4(A),U4(B); Rollback
...GRANTED; READ(A)
A :=A*2
WRITE(A);
L,(B); READ(B)
B :=B*2
WRITE(B);

UiiAii UiiBi; Commit

Summary of Strict 2PL

Ensures:
=Serializability
=Recoverability

= Avoids cascading aborts

May 1, 2020

The Locking Scheduler

Task 1: - act on behalf of the transaction
Add lock/unlock requests to transactions

= Examine all READ(A) or WRITE(A) actions
= Add appropriate lock requests
= On COMMIT/ROLLBACK release all locks

» Ensures Strict 2PL |

May 1, 2020

The Locking Scheduler

Task 2: - act on behalf of the system
Execute the locks accordingly

= Lock table: a big, critical data structure in a DBMS !

= When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

* When lock is released reactivate transaction from its wait list
* When a transaction aborts, release all its locks

= Check for deadlocks occasionally

May 1, 2020

Lock Modes

= S = shared lock (for READ)
= X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S X
None OK OK OK
S OK OK Conflict
X OK Conflict Conflict

May 1, 2020

Lock Granularity

* Fine granularity locking (e.g., tuples)
* High concurrency
* High overhead in managing locks

= Coarse grain locking (e.g., tables, predicate locks)
« Many false conflicts
» Less overhead in managing locks

May 1, 2020

Deadlocks

= Cycle in the wait-for graph:
* T1 waits for T2
* T2 waits for T3
* T3 waits for T1

» Deadlock detection
 Timeouts
* Wait-for graph

= Deadlock avoidance
« Acquire locks in pre-defined order
» Acquire all locks at once before starting

May 1, 2020

Lock Performance

ning

Throughput

Why ?

Active Transactions

May 1, 2020

Phantom Problem

= So far we have assumed the database to be a
static collection of elements (=tuples)

= |f tuples are inserted/deleted then the phantom
problem appears

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

Is this schedule serializable 2

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

Is this schedule serializable 2

’ No: T1 sees a “phantom” product A3 ‘
- CSE544-Winter2020 |

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

R4(A1);R4(A2);W5(A3);R(A1);R1(A2);R(A3)

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’

R4(A1);R4(A2);W5(A3);R1(A1);R1(A2);R4(A3)

,(A3);R4(A1);R1(A2);R1(A1);R,(A2);R4(A3)

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color="blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’ But this is conflict-serializabel

R4(A1);R4(A2);W5(A3);R1(A1);R1(A2);R4(A3)

,(A3);R4(A1);R1(A2);R1(A1);R,(A2);R4(A3)

Phantom Problem

= A “phantom” is a tuple that is
invisible durin? part of a transaction execution
but not invisible during the entire execution

= In our example:
* T1: reads list of products
* T2: inserts a new product
* T1: re-reads: a new product appears !

May 1, 2020

Dealing With Phantoms

» Lock the entire table

= Lock the index entry for ‘blue’
* If index is available

= Or use predicate locks
* A lock on an arbitrary predicate

Dealing with phantoms is expensive |

Discussion

We always want a serializable schedule

Strict 2PL guarantees conflict serializability

" In a static database:
» Conflict serializability implies serializability

= In a dynamic database:

* Need both conflict serializability and handling of
phantoms to ensure serializability

May 1, 2020

