fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Query Optimization (part 4)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

April 27, 2020 CSE 444 - Spring 2020

Announcements

= Lab1 is graded and the feedback is pushed
= HW2 due tonight
= Lab2 due on Friday

= Quiz next Wednesday (May 6)

April 27, 2020 CSE 444 - Spring 2020

Where We Are

Three components:
= Cost/cardinality estimation

= Search space
* Algebraic laws < we are finishing this...
* Restricting the query plans < ...and this next

= Search algorithm < then we'll discuss this

April 27, 2020 CSE 444 - Spring 2020

Laws Involving Constraints

= These are laws that hold only under constraints

= Most common: redundant key foreign-key join

April 27, 2020 CSE 444 - Spring 2020

Laws Involving Constraints

Supply(sid, pno, discount)

Part(pno, pname, category, price)

select x.sid, X.pno, x.discount
from Supply x, Party
where X.pno = y.pno

April 27, 2020

Laws Involving Constraints

Supply(sid, pno, discount)

Part(pno, pname, category, price)

select x.sid, X.pno, x.discount
from Supply x, Party
where X.pno = y.pno

hree constraints are needed

select x.sid, x.pno, x.disount
from Supply x

April 27, 2020

Laws Involving Constraints

Supply(sid, pno, discount)

Part(pno, pname, category, price)

select x.sid, X.pno, x.discount
from Supply x, Party
where X.pno = y.pno

hree constraints are needed
1. Part.pno is a key

2. Supply.pno is a foreign key
3. Supply.pno IS NOT NULL

select x.sid, x.pno, x.disount
from Supply x

April 27, 2020

Discussion

= When implemented in the optimizer, algebraic
laws are called optimization rules

= More rules - larger search space - better plan
= Less rules > faster optimization - less good plan

= There is no “complete set” of rules for SQL;
Commercial optimizers typically use 5-600 rules,
constantly adding rules in response to customer’s
needs

April 27, 2020 CSE 444 - Spring 2020

Restricting the Shape of the Query Plans

= The number of query plans is huge

= Optimizers often restrict them:
* Restrict the types of trees
* Restrict cartesian products

April 27, 2020

Types of Join Trees

= Bushy:

N/ i \N
SN N
R’I/ \R5

April 27, 2020 CSE 444 - Spring 2020

Types of Join Trees

*Linear (aka Z|g zag):

VAN
VAN
Y

R2

Types of Join Trees

= Right deep:

April 27, 2020 CSE 444 - Spring 2020

Types of Join Trees

= |_eft deep:
« Work well with existing join algos >
 Nested-loop and hash-join » / \ R4
e
 Facilitate pipelining /N\ \RZ
> R5
N

April 27, 2020 CSE 444 - Spring 2020

Avoid Cartesian Products

= Cartesian products are usually inefficient

= Most query optimizers avoid them

April 27, 2020 CSE 444 - Spring 2020

Avoid Cartesian Products

Supplier(sid,name,discount,city) select *

Supply(sid, pno) from Supplier x, Supply vy, Part z
Part(pno, pname, price) where x.sid = y.sid and y.pno = z.pno

and x.city='Seattle’ and z.price=100;

April 27, 2020 CSE 444 - Spring 2020

Avoid Cartesian Products

Supplier(sid,name,discount,city) select *

Supply(sid, pno) from Supplier x, Supply vy, Part z
Part(pno, pname, price) where x.sid = y.sid and y.pno = z.pno

and x.city='Seattle’ and z.price=100;

T)'plCCIl Dqy.pno = z.pno
plan
My sid = y.sid
O-price=100

Ucity=‘SeattIe’

Supplierx Supply y Part z

April 27, 2020 CSE 444 - Spring 2020

Avoid Cartesian Products

Supplier(sid,name,discount,city) select *

Supply(sid, pno) from Supplier x, Supply vy, Part z
Part(pno, pname, price) where x.sid = y.sid and y.pno = z.pno

and x.city='Seattle’ and z.price=100;

T)'piCCIl Xy pno = z.pno Plan with

Xy sid = y.sid

plcm Cartesian
pl'OCIUCl' / and y.pno = z.pno
My sid = y.sid X
O price=100
O city="Seattle’

‘ O city="Seattle’ O price=100

Supplier x Supply y Part z ‘
Supplier x Part z Supply z

Most optimizers will not consider this plan

April 27, 2020 CSE 444 - Spring 2020 | V4

Query Optimization

Three components:
= Cost/cardinality estimation
= Search space

= Search algorithm & rest of this lecture

April 27, 2020 CSE 444 - Spring 2020

Two Types of Optimizers

= Heuristic-based optimizers:

 Apply greedily rules that always improve plan
* Typically: push selections down

* Very limited: no longer used today

= Cost-based optimizers:
- Use a cost model to estimate the cost of each plan
* Select the “cheapest” plan
* We discuss these

April 27, 2020 CSE 444 - Spring 2020

Approaches to Search Space Enumeration

= Complete plans

= Bottom-up plans

= Top-down plans

April 27, 2020 CSE 444 - Spring 2020

Complete Plans

SELECT *
R(A,B) FROMR, S, T
S(B,C) WHERE R.B=S.B and
T(C,D) S.C=T.C and

\ <
/ Why is this
T search space
Oa<40 b4 inefficient ?
S

Answer: No way to do early pruning

April 27, 2020 CSE 444 - Spring 2020

Top-down Partial Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

\ Oa<40
T

T SELECTRA, T.D
SELECT * FROMR,S, T
FROMR, S WHERE R.B=S.B
WHE;EI I;.i—fﬁ SELECT * S and S.C=T.C
: FROM R

WHERE R.A<40

April 27, 2020 CSE 444 - Spring 2020

Bottom-up Partial Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

Why is this
better ?

We will prune bad plans for sub-expressions

April 27, 2020 CSE 444 - Spring 2020

Dynamic Programming

Originally proposed in System R [1979]
= Only handles single block queries:

SELECT list
FROM R1, ..., Rn
WHERE cond{ AND cond, AND . . . AND condj

= Some heuristics for search space enumeration:
« Selections down
* Projections up
* Avoid cartesian products

April 27, 2020 CSE 444 - Spring 2020

SELECT list

Dyn am |C P rog ramm I ng Cvi%“éE g&d{)&ﬁg cond, AND . . . AND cond,

For each subquery Q c{R1, ..., Rn} compute:
= T(Q) = the estimated size of Q
= Plan(Q) = a best plan for Q

= Cost(Q) = the estimated cost of that plan

April 27, 2020

SELECT list

Dyn am |C P rog ramm I ng \IjVRI)-IOEI\IgE g&d{}&rﬁg cond, AND . . . AND cond,

= Step 1: For each {R;} do:
* T({R:}) = T(R;)
e Plan({R.}) = access method for R
 Cost({R}) = cost of access method for R

April 27, 2020

SELECT list

Dyn am |C P rog ramm I ng CVRI)-IOEI\IQE g&d{}&rﬁg cond, AND . . . AND cond,

= Step 2: For each Q ¢{R;, ..., R,} of size k do:

* T(Q) = use estimator

» Consider all partitions Q = Q' U Q"
compute cost(Plan(Q’) < Plan(Q"’))

« Cost(Q) = the smallest such cost
* Plan(Q) = the corresponding plan

= Note
* If we restrict to left-linear trees: Q' = single relation
* May want to avoid cartesian products

April 27, 2020

SELECT list

Dyn am |C P rog ramm I N g Cvicl)zl\éE gﬁd{}&rﬁg cond, AND . . . AND cond,

= Step 3: Return Plan({R;, ..., R,})

April 27, 2020

SELECT *
FROM R,S,T,U
WHERE cond,; AND cond, AND . ..

"R STU
= Assumptions:

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

= Every join selectivity is 0.001

April 27, 2020

Subquery T Plan Cost

R) = 2000 R 2000
S) =5000 S 5000
T
U

T 3000

U 1000

RS

RT

Assume
B(..) =T(..)/10

RU

ST

: . SU
Join selectivity

is 0.001 TU
RST

RSU

RTU

STU

RSTU

April 27, 2020 CSE 444 - Spring 2020

Subquery T Plan Cost

T(R) = 2000 R 2000

T(S) = 5000 S £000

T(T) = 3000 . oo

T(U) = 1000

U 1000

RS 10000

RT 6000

Assume RU 2000
B(..) =T(..)/10

ST 15000

: L su 5000
Join selectivity

is 0.001 TU 3000

RST 30000

RSU 10000

RTU 6000

STU 15000

RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 S 5000
T(T) = 3000 N 2000
T(U) = 1000
U 1000
RS 10000
RT 6000
Assume RU 2000
B(..) =T(..)/10
ST 15000
: L su 5000
Join selectivity
is 0.001 TU 3000
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 S 5000 Table scan 500
T(T) =3000 N 2000
T(U) = 1000
U 1000
RS 10000
RT 6000
Assume RU 2000
B(..) =T(..)/10
ST 15000
_ o Su 5000
Join selectivity
is 0.001 TU 3000
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 s 5000 Table scan 500
T(T) = 3000 T 3000 Table scan 300
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000
RT 6000
Assume RU 2000
B(..) =T(..)/10
ST 15000
_ o suU 5000
Join selectivity
is 0.001 TU 3000
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 S 5000 Table scan 500
T(T) - 3000 T 3000 Table scan 300
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000 R » S nested loop join
RT 6000
Assume RU 2000
B(..)=T(..)/10
(-) (-) ST 15000
_ o Su 5000
Join selectivity
is 0.001 L -
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 s 5000 Table scan 500
T(T) = 3000 T 3000 Table scan 300
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000 R » S nested loop join
RT 6000 R » T index join
Assume RU 2000
B(..)=T(..)/10
() () ST 15000
_ o suU 5000
Join selectivity
is 0.001 TV 3000
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 s 5000 Table scan 500
T(T) - 3000 T 3000 Tabl 300
aple scan
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000 R » S nested loop join
RT 6000 R x T index join
Assume RU 2000 R > U index join
B(..) = T(..)/10
ST 15000 S x T hash join
. o SU 5000
Join selectivity 5 000
is 0.001
RST 30000
RSU 10000
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 s 5000 Table scan 500
T(T) - 3000 T 3000 Tabl 300
able scan
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000 R » S nested loop join
RT 6000 R x T index join
Assume RU 2000 R 0 U index join
B(..) = T(..)/ 10
ST 15000 S » T hash join
. o SU 5000
Join selectivity = 000
is 0.001
RST 30000 (RT) < S hash join
RSU 10000 (SU) < R merge join
RTU 6000
STU 15000
RSTU 30000

April 27, 2020 CSE 444 - Spring 2020

Example

Subquery T Plan Cost
T(R) = 2000 R 2000 Clustered index scan R.A 200
T(S) = 5000 S 5000 Table scan 500
T(T) - 3000 T 3000 Tabl 300
able scan
T(U) = 1000
U 1000 Unclustered index scan U.F 1000
RS 10000 R » S nested loop join
RT 6000 R x T index join
Assume RU 2000 R 5 U index join
|
B(..) = T(..)/10
ST 15000 S » T hash join
_ o su 5000
Join selectivity = oo
is 0.001
RST 30000 (RT) > S hash join
RSU 10000 (SU) < R merge join
RTU 6000
STU 15000
RSTU 30000 (RT) = (SU) hash join

April 27, 2020 CSE 444 - Spring 2020

Discussion

= For the subset {RS}, need to consider both
R><tS and S 1< R

Because the cost may be different!

= When computing the cheapest plan for
(Q) > R

we may consider new access methods for R, e.g.
an index look-up that makes sense only in the
context of the join

April 27, 2020 CSE 444 - Spring 2020

How Many Plans Are There?

A bit of math...

= The n’th Catalan number =
number of ways to write n pairs of parentheses

c o 1 (Zn)
" n+1\n

= n pairs of parentheses go around n+1 items:

April 27, 2020 CSE 444 - Spring 2020

How Many Plans Are There?

A bit of math...

= The n’th Catalan number =
number of ways to write n pairs of parentheses

c o 1 (Zn)
" n+1\n
= n pairs of parentheses go around n+1 items:

»3items: (AB)C, A(BC) ¢, = :(}) =2

April 27, 2020 CSE 444 - Spring 2020

How Many Plans Are There?

A bit of math...

= The n'th Catalan number =
number of ways to write n pairs of parentheses

o - 1 (Zn)
" n+1\n
= n pairs of parentheses go around n+1 items:
. 1
=3 items: (AB)C, A(BC) ¢, = 5(;) =2

=4 items: ((AB)C)D, (AB)(CD),
(A(BC))D, A((BC)D),

A(B(CD)) =19 =5

April 27, 2020 CSE 444 - Spring 2020

How Many Plans Are There?

= The number of plans with n relations R,R,,...,R, is

_ (2(n-1))!
- (n—1)!

= Reason: any parenthesis times any permutation

" E.g. n=4: P, =6!/3!=120
* ((RiR2)R3)R4, ((R1R2)R4)R3, ((R1R3)R2)R4, ((RiR3)R4)R;...
* (R1R2)(R3R4), (R1R2)(R4R3),...

* (R1(R2R3))R4 (R1(RaR4))Rs,...

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond; AND cond, AND . . . AND condy

Given a query with n relations R1, ..., Rn

= How many plans are there?
« A: (2(n-1))! / (n-1)!= n(n+1)(n+2)...(2n-3)(2n-2)

= How many entries do we have in the dynamic
programming table?

= For each entry, how many alternative plans do
we need to inspect?

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond; AND cond, AND . . . AND condy

Given a query with n relations R1, ..., Rn

= How many plans are there?
« A: (2(n-1))! / (n-1)!= n(n+1)(n+2)...(2n-3)(2n-2)

= How many entries do we have in the dynamic
programming table?
« A: 20 -]

= For each entry, how many alternative plans do
we need to inspect?

* A: for each entry with k tables, examine 2k - 2 plans

April 27, 2020 CSE 444 - Spring 2020

Reducing the Search Space

= Left-linear trees

= No cartesian products

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond; AND cond, AND . . . AND condy

Given a query with n relations R1, ..., Rn
Assume left-linear plans only

= How many plans are there?

= How many entries do we have in the dynamic
programming table?

= For each entry, how many alternative plans do
we need to inspect?

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond4 AND cond; AND . . . AND cond

Given a query with n relations R1, ..., Rn
Assume left-linear plans only

= How many plans are there?
« A:nl=1%2%3%...%n

= How many entries do we have in the dynamic
programming table?
« A: 20 -]

= For each entry, how many alternative plans do
we need to inspect?
* A: for each entry with k tables, examine k plan

April 27, 2020 CSE 444 - Spring 2020

Reducing the Search Space

= Left-linear trees

= No cartesian products

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond4 AND cond; AND . . . AND cond

Chain iOin: R] (Ao,A])N Rz(A],Az)N... NRn(An-'llAn)
Assume left-linear plans without cartesian product
= How many plans are there?

= How many entries do we have in the dynamic
programming table?

= For each entry, how many alternative plans do
we need to inspect?

April 27, 2020 CSE 444 - Spring 2020

SELECT list
FROM R1,...,Rn
WHERE cond4 AND cond; AND . . . AND cond

Chain iOin: R] (Ao,A])N Rz(A],Az)N... NRn(An-'llAn)
Assume left-linear plans without cartesian product

= How many plans are there?
« A: 2n]

= How many entries do we have in the dynamic
programming table?
« A: n(n-1)/2

= For each entry, how many alternative plans do
we need to inspect?
* A: for each entry with k tables, examine 2 plans

April 27, 2020 CSE 444 - Spring 2020

