fon

sessioniD

NumberOfsession

Date
Experimentin

lation
dividus

Trial

Irialip

e
FKs

sessionlD
NumberOfTrial
Setupid
Subjectid

ouration
NMiarker
Setupharker
Record edMovichie
Hote

Setuphame

sewpType 2l o/
. g

Resolution 1 Janos Rickard f

Fiter /

SetupCondition

M

KeyiShae'

Bronn

Trial_has_Timecourse Trial_has_Trajectory
K1 | TeisliD L | TialD PEN - A AN
Xz [rimecoursetn 2 |Trajectoryin Yt A T
e ¥ Porck
Toras
Timecourse Trajectory =
< n o o " Walton JoffreMargaetyen
imecourse esiectory Mysceh Greger
e <TOrlganaSano yroe!
Frequency Frequency e
segmentio segmento Meryn
KindOfData KindOfData Gendry
Nerames Markerd
) P NFrames
BRIt

Shle S5, S, 0n (X7

[s/s
N A
\'\.\\/xf//./
<\ /.1.\

N gl

Worker 1
P
L

Worker 3

Worker 3

Worker 3

(a) Traditional parallel query plan

gCube shuffle-based parallel

Database System Internals

Query Optimization (part 2)

April 22, 2020

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

Today’s Agenda

= Recap Partitioned Hash-join
(from two lectures ago)

= Finish discussing cardinality estimation

CSE 444 - Spring 2020 2

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Rs, ..., Ry

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Rs, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Rs, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

= Goal: each R, should fit in main memory:

B(R) < M

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Rs, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

= Goal: each R, should fit in main memory:

B(R) < M

How do we choose k?

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

= We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT
e 1
1
INPUT 2
2 hash
> function o0 ¢
h M-1
B(R)
N~

Disk M main memory buffers

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ v
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

* We choose k = M-1
Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

Assumption: B(R)YM =M, i.e. B(R)< M?

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash Join (Grace-Join)

RS

= Step 1:
« Hash S into M-1 buckets
 Send all buckets to disk
= Step 2
« Hash R into M-1 buckets
 Send all buckets to disk
= Step 3

 Join every pair of buckets

Note: partitioned hash-join
is sometimes called
grace-join

\

April 22, 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

Input buffer

w N = O

12

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

3 4

12 14

L

~— Disk
\ /

Memory M = 5 pages

R

Hash h: value % 4

310

Input buffer

w N = O

1|7
4|3
2 | 5
9| 8
1] 9
12| 1
5|7

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

3 4

12 14

L

~— Disk
\ /

Memory M = 5 pages

R

Hash h: value % 4

0

Input buffer

w N = O

1|7
4|3
2 | 5
9| 8
1] 9
12| 1
5|7

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

\

~— Disk
/

12 14

L

Memory M = 5 pages

Hash h: value % 4

117

Input buffer

w N = O

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

\

~— Disk
/

12 14

L

Memory M = 5 pages

Hash h: value % 4

Input buffer

w N = O

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk
\ /

R
Sl

5 2
3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

4 | 3

Input buffer

w N = O

0

1

12

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

3 4

12 14

11

\

Memory M = 5 pages

Hash h: value % 4

0

3

1

Input buffer

w N = O

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

3 4

12 14

11

\

Memory M = 5 pages

Hash h: value % 4

0| 4

3

1

Input buffer

w N = O

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

3 4

12 14

11

\

Memory M = 5 pages

Hash h: value % 4

0| 4

1

Input buffer

w N = O

April 22, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

Dk T — —
R S Memory M = 5 pages
3| o0 Hash h: value % 4
- 4 4 3 1 1 5 9 9 1 5
Input buffer ;

m 2 5 2

12 | 1
-

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

~— Disk
\ /

Memory M = 5 pages

Hash h: value % 4

Input buffer

w N = O

R S
DEEE T
|k
- BGE
m
T
12| 1
T
\ /

April 22, 2020

CSE 444 - Spring 2020

—
\

T
I

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

— T

Memory M = 5 pages

0|4 8 112 Input buffer Output buffer
1151]]9]09 115
2

e Join R1 with S1

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

oo

Input buffer Output buffer

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

T NN T
1 sfo s o O onn

Input buffer Output buffer

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

B mn
>

Input buffer Output buffer

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

— T
\ /
Memory M = 5 pages

- - Hash h2: value % 3
NS N3 ENES M 4]
Z
4

0

Input buffer Output buffer

3|7 3 |11 7

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

— T
\ /
Memory M = 5 pages

- - Hash h2: value % 3
NS N3 ENES M 4]
Z
4

< K

Input buffer Output buffer

0

3|7 3 |11 7

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

— T
\ /
Memory M = 5 pages

- - Hash h2: value % 3
NS N3 ENES M 4]

>
< K

Input buffer Output buffer

3|7 3 |11 7

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

24 4]c
S @

Input buffer Output buffer

8

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages

Input buffer Output buffer

Join R2 with S2

3|7 3 |11 7

Join Rk with Sk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join

Original Relation

= Partition both relations
using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

>

INPUT

hash
> function

h

OUTPUT

1

Partitions
e

2

00 ¢

M-1

M-1

Disk B main memory buffers

—
Disk

CSE 444 - Spring 2020

April 22, 2020

Partitioned Hash-Join

Original Relation OUTPUT Partitions
S 1 S
= Partition both relations) 1
using hash fn h: R tuples in INPUT 2
partition i will only match S N oo
tuples in partition 1i. - - h M-1 Pee
M-1
~ N~
Disk B main memory buffers Disk
Partitions _
ofR&S Join Result
Read in a partition of R —— Hash table for partition
hash it using h2 (<> h!). rms" Si (< M- pages) []
Scan matching partition of h2 | 000
S, search for matches. - é []
h2 s 00
00 0 > . =
Input buffer Output []
——— for Ri buffer R,

Disk

B main memory buffers Disk

April 22, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join

» Cost: 3B(R) + 3B(S)
= Assumption: min(B(R), B(S)) <= M?

April 22, 2020

Hybrid Hash Join Algorithm (see book)

= Partition S into k << M buckets
t buckets S, ..., S, stay in memory

k-t buckets S,.q, ..., S to disk

= Partition R into k buckets
* First t buckets join immediately with S
* Rest k-t buckets go to disk

= Finally, join k-t pairs of buckets:
(Rf+]lsf+])l (Rt+2lst+2)/ oo (szsk)

Works well when B(S) > M but is not very large

April 22, 2020 CSE 444 - Spring 2020

Query Optimization

= Returning to query optimization...

= Three components:
* Cost/cardinality estimation
* Search space
» Search algorithm

= We are discussing cardinality estimation:
* Main idea: selectivity factor

* Many assumptions: uniformity, independence,
preservation of values, inclusion of values

April 22, 2020 CSE 444 - Spring 2020

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T(Supply) = 10000
T(Supplier) = 1000

Key Foreign-key Join

« How large is T(Q)?

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

Supplier(sid, sname, scity, sstate) T(Supply) = 10000
Supply(sid, pno, quantity) T(Supplier) = 1000

Key Foreign-key Join

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid

* Answer 1. T(Q) = T(Supply) (why?)

Supplier(sid, sname, scity, sstate) T(Supply) = 10000
Supply(sid, pno, quantity) T(Supplier) = 1000

Key Foreign-key Join

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid

* Answer 1. T(Q) = T(Supply) (why?)

 Answer 2:

T(Q) = T(Supply »x Supplier)
= T(Supply)*T(Supplier) / max(V(Supply,sid),V(Supplier,sid))

Supplier(sid, sname, scity, sstate) T(Supply) = 10000
Supply(sid, pno, quantity) T(Supplier) = 1000

Key Foreign-key Join

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid

* Answer 1. T(Q) = T(Supply) (why?)

o . V(Supplier,sid) = T(Supplier)
Answer 2) V(Supply,sid) < V(Supplier,sid)

T(Q) = T(Supply »x Supplier)
= T(Supply)*T(Supplier) / max(V(Supply,sid),V(Supplier,sid))

Supplier(sid, sname, scity, sstate) T(Supply) = 10000
Supply(sid, pno, quantity) T(Supplier) = 1000

Key Foreign-key Join

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid

* Answer 1. T(Q) = T(Supply) (why?)

o . V(Supplier,sid) = T(Supplier)
Answer 2) V(Supply,sid) < V(Supplier,sid)

T(Q) = T(Supply »x Supplier)
= T(Supply)*T(Supplier) / max(V(Supply,sid),V(Supplier,sid))
= T(Supply)*T(Supplier) / V(Supplier,sid) = T(Supply)

Supplier(sid, sname, scity, sstate) T(Supply) = 10000
Supply(sid, pno, quantity) T(Supplier) = 1000

Key Foreign-key Join

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid

* Answer 1. T(Q) = T(Supply) (why?)

o . V(Supplier,sid) = T(Supplier)
Answer 2) V(Supply,sid) < V(Supplier,sid)
Containment
of values assumption
T(Q) = T(Supply x Supplier)

= T(Supply)*T(Supplier) / max(V(Supply,sid),V(Supplier,sid))
= T(Supply)*T(Supplier) / V(Supplier,sid) = T(Supply)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T(Supply) = 10000
TKSupphem"1000
V(Supplier, sstate) = 10

Preservation of Values

« How large is T(Q)?

SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

and x.sstate = ‘WA’

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T(Supply) = 10000
T(Suppﬁeﬂ"1000
V(Supplier, sstate) = 10

Preservation of Values

« How large is T(Q)?

T(Q) = T(Gsstate=‘WA’ (SUpply X SuPp”er))

SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

and x.sstate = ‘WA’

= T(Supply x Supplier) / V(Supply x Supplier, sstate)

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) T(Supply) = 10000

T(Suppﬁeﬂ"1000
V(Supplier, sstate) = 10

Preservation of Values

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid
and x.sstate = ‘WA’

Preservation of
values assumption

V(Supply x Supplier, sstate) = V(Supplier, sstate) = 10

T(Q) = T(Gsstate=‘WA’ (SUpply X SuPp”er))
= T(Supply x Supplier) / V(Supply x Supplier, sstate)

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) T(Supply) = 10000

T(Suppﬁeﬂ"1000
V(Supplier, sstate) = 10

Preservation of Values

. SELECT sname
e How Iarge IS T(Q)? FROM Supplier x, Supply vy

WHERE x.sid = y.sid
and x.sstate = ‘WA’

Preservation of
values assumption

V(Supply x Supplier, sstate) = V(Supplier, sstate) = 10

T(Q) = T(Gsstate=‘WA’ (SUpply X SUpp”er))
= T(Supply x Supplier) / V(Supply x Supplier, sstate)
= T(Supply x Supplier) / V(Supplier, sstate)
= T(Supply) / 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Example

SELECT sname

 Enumerate logical plans, |rrou supplier x, supply y

WHERE x.sid = y.sid

estimate T(temp relations)| and y.pno - 2

and x.scity = ‘Seattle’
and x.sstate = ‘WA’

* For each logical plan,
enumerate physical plans,
estimate Cost

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sSname

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid
and y.pno = 2

O pno=2 Ascity="Seattle’ A sstate="WA and x.sclty = “Seattle’
and x.sstate = ‘WA’
/ sid = sid\
Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

Estimated
(why?)

T=10000

c)-pno=2 Ascity='Seattle’ A sstate="WA

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

N

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20 M — 1 1
V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

ogical Query Plan 1

sname

Estimated
(why?)

SELECT sname
T <1 FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

O pno=2 Ascity="Seattle’ A sstate="WA and x.sclty = “Seattle’
and x.sstate = ‘WA’

T =10000
e
/ sid = sid\
Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

o

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

/ sid = snd\
Very wrong!
Why?

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Loglcal Query Plan 2

oy

r i
Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Very wrong!
Why?

SC|ty- SeaTIe Asstate="WA

Supplier

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

Different

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

estimate ®

- Sld sid
Very wrong!
Why?

r =9 SC|ty— SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PhyS|CaI Plan 1

sname

T <1

c)-pno=2 Ascity='Seattle’ A sstate="WA

T =10000
Total cost:
o
sid = sid
Block nested loop joi
Scan S | S]
upply “an Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PhyS|CaI Plan 1

sname

T <1

c)-pno=2 Ascity='Seattle’ A sstate="WA

T=10000

Total cost: 100+100*100/10 = 1100

=
sid = sid

Block nested loop joi

Scan

Supply Sean - Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

=
T= A/ sid = sid\
M

ain memory join

Unclustered Gp 0=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) =
Cost of Supplier(scity) =
Total cost:

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
SU ppl ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

=
T= A/ sid = sid\
M

ain memory join

Unclustered Gp 0=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) = 4
Cost of Supplier(scity) =
Total cost:

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
SU ppl ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

<
T= ‘/ sid = sid\
M

ain memory join

Unclustered Gp o=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
Su ppl Ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

shname
T=4 l
O scity="Seattle’ A sstate="WA' Cost of Supply(pno) =
Cost of Index join =
Total cost:
=7
Clustered
Index join
Unclustered Gp 0=2
index lookup r
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4 l

Cost of Supply(pno) = 4
Cost of Index join =

O-c~‘,c:ity=‘Sea’tIe’ Asstate="WA
Total cost:

=
Clustered
Index join

index lookup
Supply(pno)

Supply Supplier

Unclustered Gprozz

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4 l

Cost of Supply(pno) = 4
Cost of Index join = 4

O-c~‘,c:ity=‘Sea’tIe’ Asstate="WA
Total cost: 8

=
Clustered
Index join

index lookup
Supply(pno)

Supply Supplier

Unclustered Gprozz

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

» Relax uniformity assumption:
T(0a-(R)) = T(R) / V(R,A)

= Histogram:
 Partition R into buckets by the values of A
* For each bucket, store T(bucket) and other stats

» RDBMS maintain histograms on some attributes of
some tables; recomputed periodically using
sampling

April 22, 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =7

April 22, 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =7

< <

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 /50 = 3000

April 22, 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(EmpO|yee) =7 c)-age>28 and age<35(EmpO|yee) =7

Age:

0-20

20-29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

April 22, 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

c)-age=48(Emp()lyee) =7 c)-age>28 and age<35(EmpO|yee) =7

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Estimate =1200

Estimate = 1*80 + 5*500 = 2580

April 22, 2020 CSE 444 - Spring 2020

Types of Histograms

= How should we determine the bucket boundaries
in a histogram?

April 22, 2020

Types of Histograms

= How should we determine the bucket boundaries
in a histogram?

= Eg-Width

= Eg-Depth

= Compressed

= V-Optimal histograms

April 22, 2020

Employee(ssn, name, age)

Eqg-width:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eq-depth:

Age: 0-33 33-38 38-43 43-45 45-54 > 54
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

April 22, 2020

CSE 444 - Spring 2020

V-Optimal Histograms

= Defines bucket boundaries in an optimal way, to
minimize the error over all point queries

= Computed rather expensively, using dynamic
programming

= Modern databases systems use V-optimal
histograms or some variations

April 22, 2020

Difficult Questions on Histograms

» Small number of buckets

« Hundreds, or thousands, but not more
- WHY?

= Not updated during database update, but
recomputed periodically
« WHY?

= Multidimensional histograms rarely used
« WHY?

April 22, 2020

Difficult Questions on Histograms

= Small number of buckets
« Hundreds, or thousands, but not more

» WHY? All histograms are kept in main memory during
query optimizatfion; plus need fast access

= Not updated during database update, but
recomputed periodically
« WHY?

= Multidimensional histograms rarely used
- WHY?

April 22, 2020

Difficult Questions on Histograms

= Small number of buckets
« Hundreds, or thousands, but not more

» WHY? All histograms are kept in main memory during
query optimizatfion; plus need fast access

= Not updated during database update, but
recomputed periodically

* WHY? Histogram update creates a write conflict;
would dramatically slow down transaction throughput

= Multidimensional histograms rarely used
- WHY?

April 22, 2020

Difficult Questions on Histograms

= Small number of buckets
« Hundreds, or thousands, but not more

» WHY? All histograms are kept in main memory during
query optimizatfion; plus need fast access

= Not updated during database update, but
recomputed periodically

* WHY? Histogram update creates a write conflict;
would dramatically slow down transaction throughput

= Multidimensional histograms rarely used

* WHY?2 Too many possible multidimensional histograms,
unclear which ones to choose

April 22, 2020

