fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

External Memory Algorithms (part 3)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

April 17, 2020 CSE 444 - Spring 2020

Announcements

= 544 review 1 is dues today (by email to me)

= Lab 2 (part 1) due next Friday, 4/24

= HW2 due following Monday, 4/27

April 17, 2020 CSE 444 - Spring 2020

Announcement: Piazza Repose Times

= Monday - Kexuan: 2pm+10pm
= Tuesday - Ying: Qam+9pm

= Wednesday - Remy: TBD

= Thursday - Yuchong: TBD

= Friday - Yin Yin / Steven: 12pm+10pm
= Saturday - Yin Yin: 2pm + 10pm

= Sunday - Kexuan: 2pm+10pm

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6, (R) =
V(R, a) = 20

= Table scan:
» Index based selection:

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6, (R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6, (R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:
e If index is clustered:
e If index is unclustered:

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6, (R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:

e If index is clustered:
* If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6, (R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 1/Os

=" Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os
* If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000

= Exqmple; T(R) = 100,000 cost of 5,-(R) = ?
V(R, a) = 20

= Table scan: B(R) = 1/Os

=" Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os
* If index is unclustered: T(R)/V(R,a) = |/Os

April 17, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000

= Exqmple; T(R) = 100,000 cost of 5,-(R) = ?
V(R, a) = 20

= Table scan: B(R) = 1/Os

" Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os
* If index is unclustered: T(R)/V(R,a) = 1/Os

Lesson: Don’t build unclustered indexes when V(R,a) is small !

April 17, 2020 CSE 444 - Spring 2020

Index Nested Loop Join

RxS

= Assume S has an index on the join attribute

= lterate over R, for each tuple fetch
corresponding tuple(s) from S

April 17, 2020 CSE 444 - Spring 2020

Index Nested Loop Join

RxS

= Assume S has an index on the join attribute

= lterate over R, for each tuple fetch
corresponding tuple(s) from S

= Cost of nested loop join
» B(R) + T(R)*B(S)
= Cost of Index Nested Loop Join:

* If index on S is clustered:
* |f index on S is unclustered:

April 17, 2020 CSE 444 - Spring 2020

Index Nested Loop Join

RxS

= Assume S has an index on the join attribute

= lterate over R, for each tuple fetch
corresponding tuple(s) from S

= Cost of nested loop join
» B(R) + T(R)*B(S)
= Cost of Index Nested Loop Join:

* If index on S is clustered:
* If index on S is unclustered: B(R) + T(R)T(S)/V(S,qa)

April 17, 2020 CSE 444 - Spring 2020

Index Nested Loop Join

RxS

= Assume S has an index on the join attribute

= lterate over R, for each tuple fetch
corresponding tuple(s) from S

= Cost of nested loop join
» B(R) + T(R)*B(S)

= Cost of Index Nested Loop Join:
* If index on S is clustered: B(R) + T(R)B(S)/V(S,qa)
* If index on S is unclustered: B(R) + T(R)T(S)/V(S,qa)

April 17, 2020 CSE 444 - Spring 2020

= Join operator algorithms
* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)
 Two-pass algorithms (Sec 15.4 and 15.5)

April 17, 2020 CSE 444 - Spring 2020

Two-Pass Algorithms

* Hash-join, merge-join assumed data <= memory

= Next: algorithm when the data >> main memory
Called external memory algorithm

= Merge-join
= Partitioned hash-join

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

e Quicksort
= What is its runtime?®

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

e Quicksort

» What is its runtime?®
* O(n log n)

= What is the best algorithm for sorting a large file
of n items on disc?

= What is its runtime?®

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

e Quicksort

» What is its runtime?®
* O(n log n)

= What is the best algorithm for sorting a large file
of n items on disc?

 Multi-way Merge sort

= What is its runtime?
* O(nlog n) CPU time; O(B log,, B) disk I/O’s

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

e Quicksort

» What is its runtime?®
* O(n log n)

= What is the best algorithm for sorting a large file
of n items on disc?

. MU"i_qu Merge sort%Main memory merge-sort: 2-way J

External memory merge-sort: multi-way
= What is its runtime?
* O(nlog n) CPU time; O(B log,, B) disk I/O’s

April 17, 2020 CSE 444 - Spring 2020

= What is the “best” algorithm for sorting an array
of n elements in main memory?

e Quicksort

» What is its runtime?®
* O(n log n)

= What is the best algorithm for sorting a large file
of n items on disc?

. MUli‘i-WG)’ Merge sort%Main memory merge-sort: 2-way J
External memory merge-sort: multi-way
= What is its runtime?
* O(nlog n) CPU time; O(B log,, B) disk I/O’s

Merge-Join is based on the multi-way merge-sort (next)

April 17, 2020 CSE 444 - Spring 2020

Merge-Sort: Basic Terminology

= A run in a sequence is an increasing subsequence

» What are the runs?

2,4,99,6103, 88,77, 3,79, 100, 2, 50

April 17, 2020

Merge-Sort: Basic Terminology

= A run in a sequence is an increasing subsequence

» What are the runs?

2, 4,99, 103,/88,77,[3, 79, 100, |2, 50

April 17, 2020

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

April 17, 2020 CSE 444 - Spring 2020

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

April 17, 2020

Q: How long are the runs?

Main memory

CSE 444 - Spring 2020

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

Q: How long are the runs?

April 17, 2020

Main memory

Disk

A: Length = M blocks

CSE 444 - Spring 2020

Phase two: merge M runs into a bigger run

* Merge M — 1 runs into a new run

= Result: runs of length M (M — 1) = M?

Input 1

Y

April 17, 2020

| Input M-1

Input 2

Main memory

AN

Output

Y

7

CSE 444 - Spring 2020

= Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2,4,7, 43,78, 103, 523
1,6,9, 12, 33, 52, 88, 320

Output:

| o

April 17, 2020

= Merging three runs to produce a longer run:

, 14, 33, 88, 92, 192, 322
2,4,7, 43,78, 103, 523
1,6,9, 12, 33, 52, 88, 320

Output:
0,?

April 17, 2020

= Merging three runs to produce a longer run:

, 14, 33, 88, 92, 192, 322
2,4,7, 43,78, 103, 523
6,9, 12, 33, 52, 88, 320

Output:
o,1,7?

April 17, 2020

= Merging three runs to produce a longer run:

, 14, 33, 88, 92, 192, 322
, 43,78, 103, 523
, 9,12, 33, 52, 88, 320

Output:
0,1,2,4,6,7,7?

April 17, 2020

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

* Merge M — 1 runs into a new run
= Result: runs of length M (M — 1) = M?

— < >
—) | - Input 1 —
| I \ | |

| >
| ' - Input2 — OUtpUt S I |
| |‘\ / | I
| 7>|Input M-1 e
Disk

Disk Main memory

If approx. B <= M? then we are done

CSE 444 - Spring 2020

April 17, 2020

Cost of External Merge Sort

In theory:
* Number of |/O’s: O(B(R) * logy B(R))

In practice:
= Assumption B(R) <= M2
» Read+write+read = 3B(R)

April 17, 2020 CSE 444 - Spring 2020

Discussion

= What does B(R) <= M2 mean?
= How large can R be?

April 17, 2020 CSE 444 - Spring 2020

Discussion

= What does B(R) <= M2 mean?
= How large can R be?

= Example:
* Page size = 32KB
* Memory size 32GB: M = 10%pages

April 17, 2020 CSE 444 - Spring 2020

Discussion

= What does B(R) <= M2 mean?
= How large can R be?

= Example:
* Page size = 32KB
* Memory size 32GB: M = 10¢ pages

=R can be as large as 10'2 pages
. 32 x 10'5 Bytes = 32 PB

April 17, 2020 CSE 444 - Spring 2020

JOINnR X' S
= How?....

April 17, 2020

Join RS
» Step 1a: generate initial runs for R
» Step 1b: generate initial runs for S

» Step 2: merge and join
 Either merge first and then join
* Or merge & join at the same time

April 17, 2020

Merge-Join Example

Setup: Want to join Rand S

Relation R has 10 pages with 2 tuples per page
Relation S has 8 pages with 2 tuples per page

Values shown are values of join attribute for each given tuple

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

12

April 17, 2020

CSE 444 - Spring 2020

Merge-Join Example

Step 1: Read M pages of R and sort in memory

Memory M = 5 pages

~ w o I
© I N N

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 1: Read M pages of R and sort in memory, then write to disk

Memory M = 5 pages

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 1: Read M pages of R and sort in memory, then write to disk

~— Disk
\ //

Memory M = 5 pages

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 1: Repeat for next M pages until all R is processed

: — N

Run 1 of R Run 2 of R

Memory M = 5 pages

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 1: Do the same with S

12 14

~ w (6)] -bm
© s N -

5 N

L

Memory M = 5 pages

April 17, 2020

CSE 444 - Spring 2020

—
\

Run 1 0of S

T
I

0

1

2

3

3

4

Merge-Join Example

Step 1: Do the same with S

~— Disk
\ /

R S
DR T
BB |
3 4 4 | 3
2 |5

12 14

11

Memory M = 5 pages

April 17, 2020

CSE 444 - Spring 2020

— T
S I

Run1of S Run2of S

0] 1 115
2|3 719
3| 4 11112
5|7
819

Merge-Join Example

Step 2: Join while merging sorted runs

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run1
Run2

Run1 Output
buffer
Run?2

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

Merge-Join Example

Step 2: Join while merging sorted runs

»

314

5|7

819

I

1 2
3 4

5
6 7
gi=t=nf
0|1
2|3

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run1
Run2

Run1 Output
buffer

Run?2

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: 3B(R) + 3B(S)

-'

1 2
3 4

5
6 7
gi=t=nf
0|1
2|3

Step 2: Join while merging

Memory M = 5 pages Output tuples

= S Rt af S ° "] Run1 oOutput
B
115] Run2

719
Input buffers
3|4 1112
5|7
|89

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: 3B(R) + 3B(S)

-'

1 2
3 4

5
6 7
gi=t=nf
0|1
2|3

Step 2: Join while merging

Memory M = 5 pages Output tuples

= S pRe af S MZRUM Output
- O 5 Run2 >

719
Input buffers
3|4 1112
5|7
|89

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: 3B(R) + 3B(S)

Step 2: Join while merging
Memory M = 5 pages

»

1 2
3 4
: Output tuples
i B
T ‘ Run1
B BB B Run2
Run=t=pf S yRur=-2-gf S . 1Run’l Output
0|1 115 buffer
[N R (KN]y T
2|3 7109
Input buffers
3|4 11| 12
5|7
8|9

April 17, 2020 CSE 444 - Spring 2020

Merge-Join Example

Step 2: Join while merging sorted runs

1 2
3 4
6

D
4

2|3

314

5|7

819

5

7
» °f S 5
0|1

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

5 RUN? buffer

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

Merge-Join Example

Step 2: Join while merging sorted runs

Run 1 of S
0|1

(6)]
~

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run1 Output
buffer
11 5 lRun2

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

Merge-Join Example

Step 2: Join while merging sorted runs

Run 1 of S
0|1

(6)]
~

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

RPN Runi
S Run2
2 3] Run1 Output

buff
1|5 lRun2 "

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

Merge-Join Example

Step 2: Join while merging sorted runs

Run 1 of S
0|1

(6)]
~

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

| 3 | Run1 Output
1 | RUN2 buffer

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

Merge-Join Example

Step 2: Join while merging sorted runs

Run 1 of S
0|1

(6)]
~

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

| 3 | Run1 Output
1 | RUN2 buffer

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

Merge-Join Example

Step 2: Join while merging sorted runs

Run1of R Run2of R

4 5 7 9
oo
Run 1 of S gRua=2-gf S
o[
x
3| 4 11|12
5|7
\8 9

April 17, 2020

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

2 3] Run1 Output
buffer
115] Run2

Input buffers

CSE 444 - Spring 2020

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

(3,3)

(3,3)

Y

Input 1

April 17, 2020

'\

Input 2

Input M-1

Main memory

Output

Y

\/

M, = B(R)/M runs for R

M, = B(S)/M runs for S

Merge-join My + M, runs;

need M, + M, <=M to process all runs
i.,e. B(R)+ B(S) <= M?

CSE 444 - Spring 2020

Summary of External Join Algorithms

» Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

* Index Join:
» Clustered: B(R) + T(R)B(S)/V(S,a)
» Unclustered: B(R) + T(R)T(S)/V(S,a)

* Merge Join: 3B(R)+3B(S)
* B(R)+B(S) <= M?

» Partitioned Hash Join: (coming up next)

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Ry, ..., Ry

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Ry, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Ry, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

= Goal: each R, should fit in main memory:

B(R) < M

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» Partition R it into k buckets on disk:
Ry, Ry, Ry, ..., Ry

= Assuming B(R;)=B(R,)=...= B(R,), we have
B(R;) = B(R)/k, for alli

= Goal: each R, should fit in main memory:
B(R) < M

How do we choose k?

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Algorithms

» We choose k = M-1 Each bucket has size approx.
B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
e 1 e
1 1
INPUT 2
2 N hash 2
> function o0 ¢ e
[| [| [| h M-1
B(R) M-1
~ ~

Disk M main memory buffers Disk

Assumption: B(R)YM =M, i.e. B(R)< M?

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash Join (Grace-Join)

RS

= Step 1:
« Hash S into M-1 buckets
 Send all buckets to disk
= Step 2
« Hash R into M-1 buckets
 Send all buckets to disk
= Step 3

 Join every pair of buckets

Note: partitioned hash-join
is sometimes called
grace-join

\

April 17, 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

310

Input buffer

w N = O

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

0

Input buffer

w N = O

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

0

117

Input buffer

w N = O

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

0

1

Input buffer

w N = O

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

~— Disk
\ /

3 4

12 14

L

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

4 | 3

Input buffer

w N = O

0

1

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

3 4

12 14

11

\

S

Memory M = 5 pages

3

1

11

Hash h: value % 4

0

3

1

Input buffer

w N = O

12

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

Memory M = 5 pages

Hash h: value % 4

0| 4

3

1

Input buffer

w N = O

R S

DEEE T
|k
ik
m
T
T

\/

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

When a bucket fills up, flush it to disk

~— Disk
\ /

Memory M = 5 pages

Hash h: value % 4

0| 4

1

Input buffer

w N = O

R S

DEEE T
|k
ik
m
T
T

\/

April 17, 2020

CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

Dk T — —
R S Memory M = 5 pages
3| o0 Hash h: value % 4
- 4 4 3 1 1 5 9 9 1 5
Input buffer ;

m 2 5 2

12 | 1
-

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

~— Disk
\ /

Memory M = 5 pages

Hash h: value % 4

Input buffer

w N = O

R S
DEEE T
|k
- BGE
m
T
12| 1
T
\ /

April 17, 2020

CSE 444 - Spring 2020

—
\

T
I

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

oo

Input buffer Output buffer

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

T NN T

Input buffer Output buffer

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

B mn
>

Input buffer Output buffer

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

24 4]c
>

0

Input buffer Output buffer

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages
Hash h2: value % 3

ol 4 4]
Sl O

Input buffer Output buffer

0

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join

Original Relation

= Partition both relations
using hash fn h: R tuples in
partition i will only match S
tuples in partition i.

>

INPUT

hash
> function

h

OUTPUT

1

Partitions
e

2

00 ¢

M-1

M-1

Disk B main memory buffers

—
Disk

CSE 444 - Spring 2020

April 17, 2020

Partitioned Hash-Join

Original Relation OUTPUT Partitions
S 1 S
= Partition both relations) 1
using hash fn h: R tuples in INPUT 2
partition i will only match S N oo
tuples in partition 1i. - - h M-1 Pee
M-1
~ N~
Disk B main memory buffers Disk
Partitions _
ofR&S Join Result
Read in a partition of R —— Hash table for partition
hash it using h2 (<> h!). rms" Si (< M- pages) []
Scan matching partition of h2 | 000
S, search for matches. - é []
h2 s 00
00 0 > . =
Input buffer Output []
——— for Ri buffer R,

Disk

B main memory buffers Disk

April 17, 2020 CSE 444 - Spring 2020

Partitioned Hash-Join

» Cost: 3B(R) + 3B(S)
= Assumption: min(B(R), B(S)) <= M?

April 17, 2020

Hybrid Hash Join Algorithm (see book)

= Partition S into k buckets
t buckets S, ..., S, stay in memory

k-t buckets S,.q, ..., S to disk

= Partition R into k buckets

* First t buckets join immediately with S
* Rest k-t buckets go to disk

= Finally, join k-t pairs of buckets:
(Rt+115t+1)/ (Rt+2lst+2)l ooy (szsk)

April 17, 2020 CSE 444 - Spring 2020

Summary of External Join Algorithms

= Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

" [Index Join:
» Clustered: B(R) + T(R)B(S)/V(S,a)
» Unclustered: B(R) + T(R)T(S)/V(S,a)

» Merge Join: 3B(R)+3B(S)
* B(R)+B(S) <= M?

» Partitioned Hash Join: 3B(R)+3B(S)
 min(B(R), B(S)) <= M2

April 17, 2020 CSE 444 - Spring 2020

