fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Query Execution and Algorithms

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

April 13, 2020 CSE 444 - Spring 2020

Announcements

" Lab1 due on Wednesday
= 544 paper 1 report due Friday

* HW2 will be released soon, due Monday, 4/27

April 13, 2020 CSE 444 - Spring 2020

What We Have Learned So Far

= Overview of the architecture of a DBMS

= Access methods
* Heap files, sequential files, Indexes (hash or B+ trees)

= Role of buffer manager

= Practiced the concepts in hw1 and lab1

April 13, 2020 CSE 444 - Spring 2020

DBMS Architecture

Admission Control

Connection Mgr

Process Manager

Parser

Query Rewrite

Optimizer

Executor

Query Processor

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

Access Methods

Buffer Manager

Lock Manager

Log Manager

Storage Manager

Shared Ultilities

April 13, 2020

CSE 444 - Spring 2020

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

Next Lectures

How to answer queries efficiently

= Query optimization: find a good plan

= Query execution: execute the plan

We start with execution and analyze its cost.
That will inform how to optimize.

April 13, 2020 CSE 444 - Spring 2020

Query Execution Summary

= SQL query transformed into physical plan
* Access path selection for each relation
* Implementation choice for each operator

» Scheduling decisions for oFerators:
Single-threaded or parallel, pipelined or materialized

= Execution of the physical plan is pull-based

= Operators given a limited amount of memory

April 13, 2020 CSE 444 - Spring 2020

Pipelined Query Execution

next()
(On the fly) Tlsname
next()
(On the fly) Osscity="Seattle’ A sstate="WA’ A pno=2
t Need to build a
nexy) hash-table
(Hash join)]
SNO = SO
neXt() neXt
Base data in
Suppliers buffer pool Supplies
(File scan) (File scan)

April 13, 2020 CSE 444 - Spring 2020

Memory Management

Each operator:

= Pre-allocates heap space for input/output tuples
 Option 1, BPtuples: pointers to data in buffer pool
« Option 2, M-tuples: new tuples on the heap

= Allocates memory for its internal state
» Either on heap or in buffer pool (depends on system)

DMBS limits how much memory each operator,
or each query can use

April 13, 2020 CSE 444 - Spring 2020

BP-tuples (option 1)

Pre-allocated tuple descriptors, which are arrays

Output tuple " of column references
[Operator} / Reference to a tuple and
— a column offset on a page
—
Input tuple (left) Input tuple (rig\
Empty slot
In this example, the right tuple Bufter poo PY \\
contains fields that themselves \ ! /
come from different input tuples 7
(as a result of an earlier join) \

Disk page\ with many
tuples & attributes

April 13, 2020 CSE 444 - Spring 2020

BP-tuples (option 1)

Output tuple

[Operator}

_\

e
Input tuple (left) Input tuple (rig\

If an Qperator consf[ructs a tuple Buffer poo
descriptor referencing a tuple

in buffer pool, it must increment \ /
pin count of page. ’
Then decrement it when descriptor
is cleared.

(more details of pin count eviction policy in book)

April 13, 2020 CSE 444 - Spring 2020

M-Tuples (option 2)

Output tuple

[Operator] ﬂé’m

A
Copy columns from

Input tuple (left) Input tuple (right) buffer pool or create
new, derived values

—_

Buffer pool /

/

More info: See 5t year reading:
[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

April 13, 2020 CSE 444 - Spring 2020

Discussion

Buffer-Pool tuples (BP-tuples)
= Pros: don’t copy the data (great performance)

= Cons:
* Need to pin pages in the BP

 Cannot compute new values:
SELECT pid, price*quantity FROM ...

M-tuples

" Pros
* No need to pin pages (except short period - why?)
» Can represent new values: price* quanity

= Cons: data copying can degrade performance

April 13, 2020 CSE 444 - Spring 2020

Operator Algorithms
(Quick review from 344 today
& new algorithms next time)

April 13, 2020 CSE 444 - Spring 2020

Operator Algorithms

Design criteria

» Cost: 10, CPU, Network

= Memory utilization

= Load balance (for parallel operators)

April 13, 2020 CSE 444 - Spring 2020

Cost Parameters

= Cost = total number of 1/0s
* This is a simplification that ignores CPU, network

 Parameters:
« B(R) = # of blocks (i.e., pages) for relation R
« T(R) = # of tuples in relation R

* V(R, a) = # of distinct values of attribute a
* When a is a key, V(R,a) = T(R)
* When a is not a key, V(R,a) can be anything < T(R)

April 13, 2020 CSE 444 - Spring 2020

Convention

= Cost = the cost of reading operands from disk

= Cost of writing the final result to disk is not
included; need to count it separately when
applicable

April 13, 2020 CSE 444 - Spring 2020

= Join operator algorithms
 One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)
 Two-pass algorithms (Sec 15.4 and 15.5)

= Note about readings:
* In class, we discuss only algorithms for joins
 Other operators are easier: book has extra details

April 13, 2020 CSE 444 - Spring 2020

Join Algorithms

= Hash join
= Nested loop join

= Sort-merge join

April 13, 2020 CSE 444 - Spring 2020

Hash join: R < S
= Scan R, build buckets in main memory
= Then scan S and join

= Cost: B(R) + B(S)

= One-pass algorithm when B(R) < M

Note: the inner relation is the relation on which we build the hash table
* Usually this is the right relation, i.e. S.
* But the following slides choose the left relation, i.e. R

April 13, 2020 CSE 444 - Spring 2020

Hash Join Example

Patient(pid, name, address)

Insurance(pid, provider, policy nb)

Patient < Insurance

Patient
1 ‘Bob’ ‘Seattle’

2 ‘Ela’ ‘Everett’
3 Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Two tuples
per page

Insurance /
2 ‘Blue’ 123
4 ‘Prem’ 432
4 ‘Prem’ 343

‘GrpH’ 554

April 13, 2020

CSE 444 - Spring 2020

Hash Join Example

Some large-
Patient 0« Insurance enough nb

Memory M = 21 pages

Showing
pid only

— Disk
\ //
Patient Insurance

214|116 |6

4 | 3 1 3

2|8

This is one page
8 95 819 with two tuples

Hash Join Example

Step 1: Scan Patient and hash table
Can be done in

method open()

— Disk
\

//

Patient Insurance

April 13, 2020 CSE 444 - Spring 2020

4]3][1]3
B [2]s
BBl :]>

Memory M = 21 pages

IN memory

Hash h: pid % 5

H BEE

>

Input buffer

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

(Disk

T
I

Patient Insurance

]

66

B

113

B (2]s

8 5 819

Memory M = 21 pages

Hash h: pid % 5

H BEE

2 | 4 E 2
Input buffer Output buffer
Write to disk or ———
pass to next
operator

April 13, 2020

CSE 444 - Spring 2020

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next() Hash h: pid % 5

H BEE

~— Disk
\ //

Patient Insurance 5 4 E
| 2 | . | 6|6 Input buffer Output buffer

+[3][1]3
9 s MEIE

8 5 819

April 13, 2020 CSE 444 - Spring 2020

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

calls to next() Hash h: pid % 5

H BEE

//

Patient Insurance |43 B -
214116 |6 Input buffer Output buffer
| 4 | 3 | 113 Keep going until read all of Insurance

— Disk
\

9 s MEIE

8 5 819

Cost: B(R) + B(S)

April 13, 2020 CSE 444 - Spring 2020

Discussion

= Hash-join is the workhorse of database systems

* The

hash table is built on the heap, not in BP;

hence it is not orﬁanized in pages,

but pages are sti

convenient to think about it

= Hash-join works great when:

o T
o T
o T

April 13, 2020

ne inner table fits in main memory
ne hash function is good (never write your ownl)

he data has no skew (discuss in class...)

CSE 444 - Spring 2020

Nested Loop Joins

= Tuple-based nested loop R < S
» R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t, and t, join then output (t4,t,)

What is the Cost?

April 13, 2020 CSE 444 - Spring 2020

Nested Loop Joins

= Tuple-based nested loop R < S
» R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t, and t, join then output (t4,t,)

What is the Cost?

= Cost: B(R) + T(R) B(S)
= Multiple-pass since S is read many times

April 13, 2020 CSE 444 - Spring 2020

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do

for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

What is the Cost?

April 13, 2020 CSE 444 - Spring 2020

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do

for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

s Cost: B(R) + B(R)B(S) What is the Cosi?

April 13, 2020 CSE 444 - Spring 2020

Page-at-a-time Refinement

//
\

//

Patient Insurance

(2] [e]

Input buffer for Patient

Disk 2|4

Input buffer for Insurance

2 [

Output buffer

4 | 3 1 3

2| 8

8 |9
I

April 13, 2020

CSE 444 - Spring 2020

Page-at-a-time Refinement

Input buffer for Patient

— Disk 4 | 3 | Input buffer for Insurance
\ //

Patient Insurance

2 | 4 6| 6 Output buffer
HEIEE
O [-]s
oo

\ //

April 13, 2020 CSE 444 - Spring 2020

Page-at-a-time Refinement

~— Disk

\ //
Patient Insurance
AENEE
B 2]

o]
\ //

Input buffer for Patient

2 | 8 | Input buffer for Insurance

Keep going until read

all of Insurance EZ
Then repeat for next Output buffer
page of Patient... until end of Patient

Cost: B(R) + B(R)B(S)

April 13, 2020 CSE 444 - Spring 2020

Block-Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuplest;inr, t,ins
if t; and t, join then output (t4,t,)

What is the Cost?

April 13, 2020 CSE 444 - Spring 2020

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

M

I
w

- Input buffer for Patient

Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

M

I
w

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

M

I
w

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

Input buffer for Patient

4 | 3 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

Input buffer for Patient

2 | 8 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

Input buffer for Patient

Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

— Disk
\

//

Patient Insurance

2 | 4 6 | 6
4 | 3 11 3
2| 8

Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuplest;inr, t,ins
if t; and t, join then output (t4,t,)

What is the Cost

April 13, 2020 CSE 444 - Spring 2020

Block Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples sin S do
for all pairs of tuplest;inr, t,ins
if t; and t, join then output (t4,t,)

s Cost: B(R) + B(R)B(S)/(M-]) What is the Cost

April 13, 2020 CSE 444 - Spring 2020

Discussion

R < S: R=outer table, S=inner table
= Tuple-based nested loop join is never used

= Page-at-a-time nested loop join:
* Usually combined with index access to inner table
« Efficient when the outer table is small

= Block memory refinement nested loop
* Usually builds a hash table on the outer table
- Efficient when the outer table is small

April 13, 2020 CSE 444 - Spring 2020

Sort-Merge Join

Sort-merge join: R xS
= Scan R and sort in main memory

= Scan S and sort in main memory
= Merge R and S

= Cost: B(R) + B(S)
= One pass algorithm when B(S) + B(R) <=M
= Typically, this is NOT a one pass algorithm,

* We'll see the multi-pass version next lecture

April 13, 2020 CSE 444 - Spring 2020

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

EREA X3 3

~— Disk
\ //

Patient Insurance
2| 4 6 | 6

3 4 4 3 1 3

2| 8

8 |9

oo RN
&) N

//

April 13, 2020 CSE 444 - Spring 2020

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

EREA X3 3

11212133446
~— Disk
I — e Ts 8 s

Patient Insurance
2| 4 6 | 6

3 4 4 3 1 3

2| 8

oo RN
&) N

//

April 13, 2020 CSE 444 - Spring 2020

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

EREA X3 3

e ——— | 112][2]3]/3]4][4]5
\ //

Patient Insurance i E

2 | 4 6|6 Output buffer
41313

ga [

o s

~— -

April 13, 2020 CSE 444 - Spring 2020

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

KN X3 3

11211231/ 3|4]|l 4|6
— Disk

\ //

. 6 | 8 8|9
Patient Insurance E 2
2141166 Output buffer
4 |3 113 Keep going until end of first relation
B 2]
8] 9
\ //

April 13, 2020 CSE 444 - Spring 2020

= Join operator algorithms
* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)
 Two-pass algorithms (Sec 15.4 and 15.5)

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

=V(R, a) = # of distinct values of attribute a

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

=V(R, a) = # of distinct values of attribute a

What is the cost in each case?
= Clustered index on a:
» Unclustered index on a:

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

=V(R, a) = # of distinct values of attribute a

What is the cost in each case?
= Clustered index on a: B(R)/V(R,a)
= Unclustered index on a: T(R)/V(R,q)

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

=V(R, a) = # of distinct values of attribute a

What is the cost in each case?

= Clustered index on a: B(R)/V(R,a)
= Unclustered index on a: T(R)/V(R,q)

Note: we ignore I/O cost for index pages

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan:
» Index based selection:

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 I/Os

» Index based selection:

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 I/Os

» Index based selection:
e If index is clustered:
e If index is unclustered:

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 I/Os

» Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os

o |If index is unclustered:

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 I/Os

=" Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os
* If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

April 13, 2020 CSE 444 - Spring 2020

Index Based Selection

B(R) = 2000
= Example: |T(R)= 100,000 cost of 6,(R) =
V(R, a) = 20

= Table scan: B(R) = 2,000 I/Os

" Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 1/Os
* If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson: Don’t build unclustered indexes when V(R,a) is small !

April 13, 2020 CSE 444 - Spring 2020

Index Nested Loop Join

RxS

= Assume S has an index on the join attribute

= lterate over R, for each tuple fetch
corresponding tuple(s) from S

= Cost:
* If index on S is clustered: B(R) + T(R)B(S)/V(S,qa)
* If index on S is unclustered: B(R) + T(R)T(S)/V(S,qa)

April 13, 2020 CSE 444 - Spring 2020

