fon

SessionlD
amberofsesson
Oate
fur | euperimeato
a
oo T 'i__‘,-
¢ x| roaio — 4 .-!! e
[J— 1 L]
NumberOfTrial 47
[A 0%
San
Setupharker A2 R Worker 3 Worker 3 Worker 3
RecordcdMioviePle A/
ote . Eﬂll . 1 (a) Traditional parallel query plan
Tral_has_Timecourse Trial_has_Trjectory Rebee] A o n—-}"l Ll
P R AT ut o : i A
R Citatinend S Seree - [2 A — s]
W= 4 e — | —,
s [raso et [Tt N AN us e SV 7 HyperCube
mmmmmmm e i i\ ! Yo iy
re2 | rmecoursen "2 [Trectonyo i Pt . o Shite N [Fox
‘ ‘ e b Podrick 2. I ., “
Toras, KeyiShae oly
Timecourse Trajectory =3 chd N . B
PX | Timece 10 LLRRT D Weltor o en
— m— o
o LD fyrcella Gregor
Frequency [— b Brom
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry Iyn
Neeames Mok
) P NFrames &L ube shuffle-based paralle]
BRIt

Database System Internals

Relational Model Review

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

April 1, 2020 CSE 444 - Spring 2020

Announcements

=Lab 1 part 1 is due on Monday, April 6
* Lab 1 in full is due on April 15

« “git pull upstream master” before building
* Remember to git commit and git push often!
* Thursday’s sections: SimpleDB repo and structure

= HW1 is due on April 10

* Submit via gradescope
see Yin Yin’s guidelines in piazza

= 544M first paper review is due April 17

« Submit via email to me.

April 1, 2020 CSE 444 - Spring 2020

Query Evaluation Steps Review

SQL query

Logical
Query plan
optimization —
_ Physical
plan

April 1, 2020 CSE 444 - Spring 2020

Database/Relation/Tuple

= A Database is collection of relations

= A Relation R is subset of S X S5 X ... X S,
* Where S; is the domain of attribute i
* n is number of attributes of the relation
* A relation is a set of tuples

= A Tuple tis an element of $; X S, x ... X S,

Other names: relation = table; tuple = row

April 1, 2020 CSE 444 - Spring 2020

Discussion

= Rows in a relation:
 Ordering immaterial (a relation is a set

* All rows are distinct - set semantics
* Query answers may have duplicates - bag semantics

= Columns in a tuple:
» Ordering is significant (in theory, it shouldn’t be)
» Applications refer to columns by their names

= Domain of each column is a primitive type

April 1, 2020 CSE 444 - Spring 2020

= Relation schema: describes column heads
 Relation name
« Name of each field (or column, or attribute)
* Domain of each field

= Degree (or arity) of relation: # attributes

= Database schema: set of all relation schemas

April 1, 2020 CSE 444 - Spring 2020

= Relation instance: concrete table content

» Set of tuples (also called records) matching the
schema

= Cardinality of relation instance: # tuples

= Database instance: set of all relation instances

April 1, 2020 CSE 444 - Spring 2020

What is the schema? What is the instance?

Supplier

sho sname |scity sstate
1 s1 city 1 WA

2 S2 city 1 WA

3 s3 city 2 MA

4 s4 city 2 MA

April 1, 2020 CSE 444 - Spring 2020

What is the schema? What is the instance?

Relation schema

Supplier(sno: integer, sname: string, scity: string, sstate: string)

> instance

Supplier

sho sname |scity sstate
1 s1 city 1 WA

2 S2 city 1 WA

3 s3 city 2 MA

4 s4 city 2 MA

April 1, 2020

CSE 444 - Spring 2020

What is the schema? What is the instance?

Handled by SimpleDB
Catalog
Relation schema

Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier SimpleDB Storage

Manager
sho sname |scity sstate
1 s1 city1 |WA b
2 S2 city 1 WA > - stance
3 s3 city 2 MA
4 s4 city 2 MA J

April 1, 2020 CSE 444 - Spring 2020

Integrity Constraints

= Condition specified on a database schema
= Restricts data that can be stored in db instance

= DBMS enforces integrity constraints
* Ensures only legal database instances exist

= Simplest form of constraint is domain constraint
o Attribute values must come from attribute domain

April 1, 2020 CSE 444 - Spring 2020

Key Constraints

= Super Key: “set of attributes that functionally
determines all attributes”

= Key: Minimal super-key; a.k.a. “candidate key”

* Primary key: One minimal key can be selected
as primary key

April 1, 2020 CSE 444 - Spring 2020

Foreign Key Constraints

= A relation can refer to a tuple in another relation

" Foreign key
» Field that refers to tuples in another relation
* This field refers to the primary key of other relation

April 1, 2020 CSE 444 - Spring 2020

Key Constraint SQL Examples

CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1integer,
pcolor wvarchar (20),
PRIMARY KEY (pno)

April 1, 2020 CSE 444 - Spring 2020

Key Constraint SQL Examples

CREATE TABLE Supply (
CREATE TABLE Part (

sno integer, pno integer,

pno integer, pname varchar (20),
. psize integer,

qty integer, pcolor varchar (20),
price integer PRIMARY KEY (pno)

) ;

April 1, 2020 CSE 444 - Spring 2020

Key Constraint SQL Examples

CREATE TABLE Supply (
sno integer,
pno integer,
gty integer,
price integer,
PRIMARY KEY (sno,pno)
)

April 1, 2020

CREATE TABLE Part (

pno integer,

pname varchar (20),
psize 1integer,
pcolor wvarchar (20),
PRIMARY KEY (pno)

CSE 444 - Spring 2020

Key Constraint SQL Examples

CREATE TABLE Supply (
sno integer,
pno integer,
gty integer,

price 1integer,

PRIMARY KEY (sno,pno),

CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1integer,
pcolor wvarchar (20),
PRIMARY KEY (pno)

) ;

FOREIGN KEY (sno) REFERENCES Supplier,
FOREIGN KEY (pno) REFERENCES Part

) ;

April 1, 2020

CSE 444 - Spring 2020

Key Constraint SQL Examples

CREATE TABLE Supply (
sno integer,
pno integer,
gty integer,

price 1integer,

PRIMARY KEY (sno,pno),

CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1integer,
pcolor wvarchar (20),
PRIMARY KEY (pno)

) ;

FOREIGN KEY (sno) REFERENCES Supplier

ON DELETE NO ACTION,

FOREIGN KEY (pno) REFERENCES Part

) ;

April 1, 2020

ON DELETE CASCADE

CSE 444 - Spring 2020

General Constraints

= Table constraints serve to express complex
constraints over a single table
CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1nteger,
pcolor wvarchar (20),
PRIMARY KEY (pno),
CHECK (psize > 0)
) 7
Note: Also possible to create constraints over many tables
Alternative: use database triggers for that purpose

April 1, 2020 CSE 444 - Spring 2020

Relational Query Languages

April 1, 2020 CSE 444 - Spring 2020

Relational Query Language

= Set-at-a-time:
* Query inputs and outputs are relations

= Two variants of the query language:
» Relational algebra: specifies order of operations
* Relational calculus / SQL: declarative

April 1, 2020 CSE 444 - Spring 2020

= We will go very quickly in class over the
Relational Algebra and SQL

» Please review at home:
* Read the slides that we skipped in class
« Review material from 344 as needed

April 1, 2020 CSE 444 - Spring 2020

Relational Algebra

= Queries specified in an operational manner
* A query gives a step-by-step procedure

= Relational operators
* Take one or two relation instances as argument
* Return one relation instance as result
* Easy to compose into relational algebra expressions

April 1, 2020 CSE 444 - Spring 2020

Five Basic Relational Operators

= Selection: o giion(S)

 Condition is Boolean combination (A,V)
of atomic predicates (<, <=, =, #, >=, >)

A Proiection: nlist-of-qﬂributes(s)
= Union (U)
= Set difference (-),

= Cross-product/cartesian product (x),
Join: R xS = gy(RxS)

April 1, 2020 CSE 444 - Spring 2020

Selection & Projection Examples

Patient

no name | zip disease
1 p1 98125 flu

2 p2 98125 heart

3 p3 98120 lung

4 p4 98120 heart
Udisease=’heqrt’(Patient)

no |name Zip disease
2 p2 98125 heart

4 p4 98120 heart

April 1, 2020

CSE 444 - Spring 2020

nzip,disease(Patient)
Zip disease
98125 flu
98125 heart
98120 lung
98120 heart

Tzip (9disease="heart’ (Patient))

Zip

98120

98125

Cross-Product Example

AnonPatient P Voters V
age |zip disease name age Zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120

PxV

P.age P.zip disease name V.age V.zip

54 98125 heart p1 54 98125

54 98125 heart p2 20 98120

20 98120 |flu p1 54 98125

20 98120 |flu p2 20 98120

April 1, 2020

CSE 444 - Spring 2020

Different Types of Join

= Theta-join: R x,S = g-4(R x §)
» Join of R and S with a join condition 0
* Cross-product followed by selection 0
= Equijoin: R x,S = ma(0s (R x S))
» Join condition 6 consists only of equalities
* Projection m, drops all redundant attributes

= Natural join: R x S =1, (g-(R x S))
* Equijoin
* Equality on all fields with same name inR and in S

April 1, 2020 CSE 444 - Spring 2020

Different Types of Join

Our focus in SimpleDB
We have a class for the

= Theta-join: R x,S = (R x STy
» Join of R and S with a jgips®®&tidition 0
* Cross-product folleWed by selection 0
= Equijoin: R x,S = ma(0,s (R x S))
» Join condition 0 consists only of equalities
* Projection 1t drops all redundant attributes

= Natural join: R x S =1, (g-(R x S))
* Equijoin
* Equality on all fields with same name inR and in S

April 1, 2020 CSE 444 - Spring 2020

EgJoin Example

AnonPatient P Voters V
age |zip disease name age Zip
50 98125 heart p1 54 98125
20 98120 flu p2 20 98120

P X P.zip = V.zip and P.age = V.agev

P.age P.zip P.disease |V.name | V.age V.zip
20 98120 flu p2 20 98120

April 1, 2020 CSE 444 - Spring 2020

Theta-Join Example

AnonPatient P Voters V
age |zip disease name age Zip
50 98125 heart p1 54 98125
19 98120 flu p2 20 98120

P X P.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 V

P.age P.zip P.disease |V.name | V.age V.zip
19 98120 flu p2 20 98120

April 1, 2020 CSE 444 - Spring 2020

Natural Join Example

April 1, 2020

CSE 444 - Spring 2020

AnonPatient P Voters V

age |zip disease name age Zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120
PxV
age Zip disease name Note:

age, zip
54 98125 | heart occur only
once

20 98120 flu

= Outer join
* Include tuples with no matches in the output
 Use NULL values for missing attributes

= Variants
* Left outer join
» Right outer join
* Full outer join

April 1, 2020 CSE 444 - Spring 2020

Outer Join Example

AnonPatient P

April 1, 2020

age |zip disease

o4 98125 heart

20 98120 flu

33 98120 lung
P>V

Voters V

name age Zip

p1 54 98125

p2 20 98120
age Zip disease name
o4 98125 heart p1
20 98120 flu p2
33 98120 lung null

CSE 444 - Spring 2020

Logical Query Plans

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

CSE 444 - Spring 2020

April 1, 2020

Logical Query Plans

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

rIsname,scity

/////// pno pno
SNo=sno
p31ze > 10
Supplier Supply Part

CSE 444 - Spring 2020

April 1, 2020

When we don’t
specify, we usually
mean EqJoin

What does
this query
compute?

More Examples

Relations
Supplier(sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)

Supply(sno,pno,qgty,price)

Name of supplier of parts with size greater than 10

“sname(supplier X SUppI)’ X (O-psize>10 (qut))

Name of supplier of red parts or parts with size greater than 10
“sname(supplierN SUppI)’ o (O-psize>10 (PCII'i') U O peolor="red’ (Pq”)))

(Many more examples in the book)

April 1, 2020 CSE 444 - Spring 2020

Extended Operators of RA

= Duplicate elimination (6)
* Since commercial DBMSs operate on multisets not sets
= Aggregate operators (y)

* Min, max, sum, average, count

= Grouping operators (y)
» Partitions tuples of a relation into “groups”
« Aggregates can then be applied to groups

= Sort operator (1)

April 1, 2020 CSE 444 - Spring 2020

Structured Query Language: SQL

= Declarative query language, based on the
relational calculus (see 344)

= Data definition language
- Statements to create, modify tables and views

= Data manipulation language
- Statements to issue queries, insert, delete data

April 1, 2020 CSE 444 - Spring 2020

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

April 1, 2020 CSE 444 - Spring 2020

Simple SQL Query

Product PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT *

FROM Product @

WHERE category="Gadgets’
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

@ ey Powergizmo $29.99 Gadgets GizmoWorks
selection

April 1, 2020 CSE 444 - Spring 2020

Simple SQL Query

Product PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product @
WHERE Price > 100

PName Price Manufacturer
“selection” and SingleTouch $149.99 Canon
“projection” MultiTouch $203.99 Hitachi

April 1, 2020 CSE 444 - Spring 2020

= Case insensitive:
« Same: SELECT Select select
« Same: Product product
* Different: ‘Seattle’ ‘seattle’

= Constants:
 ‘abc’ - yes
« “abc” - no

April 1, 2020 CSE 444 - Spring 2020

Eliminating Duplicates

Category
SELECT DISTINCT category Gadgets
FROM Product :> Photography

Household

Compare to:

Category

S c Gadgets
ELECT category :> Gadgets

FROM Product Photography

Household

April 1, 2020 CSE 444 - Spring 2020

Ordering the Results

SELECT pname, price, manufacturer
FROM Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

April 1, 2020 CSE 444 - Spring 2020

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

April 1, 2020

SELECT PName, Price

FROM Product, Company

WHERE Manufacturer=CName AND Country="Japan’
AND Price <= 200

CSE 444 - Spring 2020

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname

FROM Supplier x, Supply y, Part z

WHERE x.sno =y.sno and y.pno = z.pno
and x.scity = ‘Seattle’ and y.price < 100

April 1, 2020 CSE 444 - Spring 2020

What does
this query
compute?

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)

Part (pno,pname,psize,pcolor)
What about
this one?

SELECT z.pname, count(*) as cnt, min(y.price)
FROM Supplier x, Supply y, Part z

WHERE x.sno =y.sno and y.pno = z.pno
GROUP BY z.pname

April 1, 2020 CSE 444 - Spring 2020

Tuple Variables

Person(pname, address, worksfor)
Company(cname, address)

Which
address ?

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

SELECT DISTINCT Person.pname, Company.address
— \| FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
L_ FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

April 1, 2020 CSE 444 - Spring 2020

Nested Queries

= Nested query
* Query that has another query embedded within it
* The embedded query is called a subquery

* Why do we need them?

* Enables to refer to a table that must itself be computed

= Subqueries can appear in

 WHERE clause (common)
« FROM clause (less common)
« HAVING clause (less common)

April 1, 2020 CSE 444 - Spring 2020

Subqueries Returning Relations

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

Return cities where one can find companies that manufacture
products bought by Joe Blow

SELECT DISTINCT Company.city
FROM Company
WHERE Company.name [N
(SELECT Product.maker
FROM Purchase , Product
WHERE Product.pname=Purchase.product
AND Purchase .buyer = ‘Joe Blow’);

April 1, 2020 CSE 444 - Spring 2020

Subqueries Returning Relations

You can alsouse: s> ALLR
s > ANY R
EXISTS R
Product (pname, price, category, maker)

Find products that are more expensive than all those produced
By “Gizmo-Works”

SELECT pname
FROM Product
WHERE price > ALL (SELECT price
FROM Purchase
WHERE maker='Gizmo-Works’)

April 1, 2020 CSE 444 - Spring 2020

Correlated Queries

Movie (title, year, director, length)
Find movies whose title appears in more than one year.

SELECT DISTINCT tiue/@@
FROM Movie AS x

WHERE year <> ANY
(SELECT vyear
FROM Movie

WHERE title = x.title);

Note (1) scope of variables (2) this can still be expressed as single SFW

April 1, 2020 CSE 444 - Spring 2020

Aggregation

SELECT avg(price) SELECT count(*)
FROM Product FROM Product
WHERE maker="Toyota" WHERE year > 1995

SQL supports several aggregation operations:
sum, count, min, max, avg

Except count, all aggregations apply to a single attribute

April 1, 2020 CSE 444 - Spring 2020

Grouping and Aggregation

SELECT S
FROM R,,....R,
WHERE C1
GROUP BY ay,...,a
HAVING C2

Kk

Conceptual evaluation steps:

1.

2.

3.
4.

Evaluate FROM-WHERE, apply condition C1

Group by the attributes

Apply condition C2 to each group (may have aggregates)

Compute aggregates in

ai,...,dg

S and return the result

Read more about it in the book...

April 1, 2020

CSE 444 - Spring 2020

From SQL to RA

April 1, 2020 CSE 444 - Spring 2020

From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

April 1, 2020 CSE 444 - Spring 2020

From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

g — o

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

X.name,z.name

0)

price>100 and city=‘Seattle’

|

><1 cid=cid

>

id=pid
/ \ Customer

Product

Purchase

April 1, 2020 CSE 444 - Spring 2020

An Equivalent Expression

™ o)
Query optimization =
finding cheaper, I
equivalent expressions .
_ J X.name,z.name
/l>< cid=cid
pid=pid

0]
/ city="Seattle’
0]
price>100
/ Customer
Product Purchase

April 1, 2020 CSE 444 - Spring 2020

An Equivalent Expression

™ o)
Query optimization =
finding cheaper, I
equivalent expressions .
_ J X.name,z.name
/l>< cid=cid
pid=pid

0]
/ city="Seattle’
0]
price>100
/ Customer
Product Purchase

April 1, 2020 CSE 444 - Spring 2020

Extended RA: Operators on Bags

= Duplicate elimination 5
= Grouping vy
= Sorting 1

April 1, 2020 CSE 444 - Spring 2020

Logical Query Plan

SELECT city, count(*)
FROM sales

GROUP BY city

HAVING sum(price) > 100

April 1, 2020

I1 city, ¢

G p>100

Y city, sum(price)—p, count(*) — ¢

CSE 444 - Spring 2020

sales(product, city, price)

Typical Plan for Complex Aggregates

T fields \

O selection condition

SELECT-PROJECT-JOIN
;ﬁﬁ > Query
join%ion<

R/ \s /

April 1, 2020 CSE 444 - Spring 2020

Typical Plan for Complex Aggregates

haVingcondition

Yfields, sum/count/min/max(fields)

Tlields

O selection condition

join Londition]

April 1, 2020 CSE 444 - Spring 2020

Query Evaluation Steps Review

SQL query

Logical
Query plan
optimization —
_ Physical
plan

April 1, 2020 CSE 444 - Spring 2020

