
CSE 444: Database Internals

Lectures 26
NoSQL: Key Value Stores

1CSE 444 - Winter 2019

References

• Scalable SQL and NoSQL Data Stores, Rick Cattell,
SIGMOD Record, December 2010 (Vol. 39, No. 4)

• Dynamo: Amazon’s Highly Available Key-value
Store. By Giuseppe DeCandia et. al. SOSP 2007.

• Online documentation: Amazon DynamoDB.

CSE 444 - Winter 2019 2

NoSQL Motivation

• Originally motivated by Web 2.0 applications

• Goal is to scale simple OLTP-style workloads to
thousands or millions of users

• Users are doing both updates and reads

CSE 444 - Winter 2019 3

Why NoSQL as the Solution?

• Hard to scale transactions
– Need to partition the database across multiple machines
– If a transaction touches one machine, life is good
– If a transaction touches multiple machines, ACID becomes

extremely expensive! Need two-phase commit

• Replication
– Replication can help to increase throughput and lower latency
– Create multiple copies of each database partition
– Spread queries across these replicas
– Easy for reads but writes, once again, become expensive!

CSE 444 - Winter 2019 4

NoSQL Key Feature Decisions

• Want a data management system that is
– Elastic and highly scalable
– Flexible (different records have different schemas)

• To achieve above goals, willing to give up
– Complex queries: e.g., give up on joins
– Multi-object transactions
– ACID guarantees: e.g., eventual consistency is OK

• Eventual consistency: If updates stop, all replicas will converge to
the same state and all reads will return the same value

• BASE (Basically Available, Soft state, Eventually consistent)
– Not all NoSQL systems give up all these properties

5

All updates
eventually reach
all replicas

CSE 444 - Winter 2019

NoSQL

“Not Only SQL” or “Not Relational”.
Six key features:
1. Scale horizontally “simple operations”
2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID
5. Efficient use of distributed indexes and RAM
6. Flexible schema

CSE 444 - Winter 2019 6

Cattell, SIGMOD Record 2010

Data Models

• Tuple = row in a relational db

• Key-value = records identified with keys have
values that are opaque blobs

• Extensible record = families of attributes have a
schema, but new attributes may be added

• Document = nested values, extensible records
(XML, JSON, protobuf, attribute-value pairs)

CSE 444 - Winter 2019 7

Different Types of NoSQL

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached, Redis

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB, Couchbase

• Most recently: Graph databases
• New types of RDBMSs.. not really NoSQL

– Next lecture
CSE 444 - Winter 2019 8

Cattell, SIGMOD Record 2010

Today

Key-Value Store: Dynamo

• Dynamo: Amazon’s Highly Available Key-
value Store. By Giuseppe DeCandia et. al.
SOSP 2007.

• Main observation:
– “There are many services on Amazon’s platform that

only need primary-key access to a data store.”
– Best seller lists, shopping carts, customer

preferences, session management, sales rank,
product catalog

CSE 444 - Winter 2019 9

Basic Features

• Data model: (key,value) pairs
– Values are binary objects (blobs)
– No further schema

• Operations
– Insert/delete/lookup by key
– No operations across multiple data items

• Consistency
– Replication with eventual consistency
– Goal to NEVER reject any writes (bad for business)
– Multiple versions with conflict resolution during reads

CSE 444 - Winter 2019 10

Operations

• get(key)
– Locates object replicas associated with key
– Returns a single object
– Or a list of objects with conflicting versions
– Also returns a context

• Context holds metadata including version
• Context is opaque to caller

• put(key, context, object)
– Determines where replicas of object should be placed
– Location depends on key value
– Data stored persistently including context

CSE 444 - Winter 2019 11

Storage: Distributed Hash Table

Implements a distributed storage
• Each key-value pair (k,v) is stored at some server h(k)
• API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
• Problem 1: a client knows only one server, doesn’t know

how to access h(k)

• Problem 2. if new server joins, then N à N+1, and the
entire hash table needs to be reorganized

• Problem 3: we want replication, i.e. store the object at
more than one server

CSE 444 - Winter 2019 12

Distributed Hash Table
h=0h=2n-1

A

B

C
D

Responsibility of B

Responsibility of C

Responsibility of A

CSE 444 - Winter 2019 13

Distributed Hash Table Details

• This type of hashing called “consistent hashing”

• Basic approach leads to load imbalance
– Solution?

CSE 444 - Winter 2019 14

Distributed Hash Table Details

• This type of hashing called “consistent hashing”

• Basic approach leads to load imbalance
– Solution: Use V virtual nodes for each physical node
– Virtual nodes provide better load balance
– Nb of virtual nodes can vary based on capacity

CSE 444 - Winter 2019 15

Problem 1: Routing
A client doesn’t know server h(k), but some other server

• Naive routing algorithm:
– Each node knows its neighbors
– Send message to nearest neighbor
– Hop-by-hop from there
– Obviously this is O(n), so no good

• Better algorithm: “finger table”
– Memorize locations of other nodes in the ring
– a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
– Send message to closest node to destination
– Hop-by-hop again: this is log(n)

CSE 444 - Winter 2019 16

Problem 1: Routing
h=0h=2n-1

A

B

D

C

Read(k)

F

E

Client
only “knows”

server A

Redirect
request
to A + 2m

G

to D + 2p

to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)
17

Problem 2: Joining
h=0h=2n-1

A

B

CD

Responsibility of D

When X joins:
select random ID

18

Problem 2: Joining
h=0h=2n-1

A

B

CD

When X joins:
select random ID

Responsibility of D 19X

Problem 2: Joining
h=0h=2n-1

A

B

CD

When X joins:
select random ID

Responsibility of X

Redistribute
the load at D

Responsibility of D 20X

Problem 3: Replication

• Need to have some degree of replication to
cope with node failures

• Let N=degree of replication

• Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSE 444 - Winter 2019 21

Problem 3: Replication
h=0h=2n-1

A

B

C
D

Responsibility of B,C,D

Responsibility of C,D,A

Responsibility of A,B,C

CSE 444 - Winter 2019 22

Additional Dynamo Details

• Each key assigned to a coordinator
• Coordinator responsible for replication

– Replication skips virtual nodes that are not distinct
physical nodes

• Set of replicas for a key is its preference list
• One-hope routing:

– Each node knows preference list of each key
• “Sloppy quorum” replication

– Each update creates a new version of an object
– Vector clocks track causality between versions

CSE 444 - Winter 2019 23

Vector Clocks

• An extension of Multiversion Concurrency
Control (MVCC) to multiple servers

• Standard MVCC:
each data item X has a timestamp t:

X4, X9, X10, X14, …, Xt

• Vector Clocks:
X has set of [server, timestamp] pairs

X([s1,t1], [s2,t2],…)

CSE 444 - Winter 2019 24

Vector Clocks
Dynamo:2007

25CSE 444 - Winter 2019

D is object
Si is node handling write

Vector Clocks: Example

• A client writes D1 at server SX:
D1 ([SX,1])

• Another client reads D1, writes back D2; also handled
by server SX:

D2 ([SX,2]) (D1 garbage collected)
•

•

•
CSE 444 - Winter 2019 26

Vector Clocks: Example

• A client writes D1 at server SX:
D1 ([SX,1])

• Another client reads D1, writes back D2; also handled
by server SX:

D2 ([SX,2]) (D1 garbage collected)
• Another client reads D2, writes back D3;

handled by server SY:
D3 ([SX,2], [SY,1])

•

•
CSE 444 - Winter 2019 27

Vector Clocks: Example

• A client writes D1 at server SX:
D1 ([SX,1])

• Another client reads D1, writes back D2; also handled
by server SX:

D2 ([SX,2]) (D1 garbage collected)
• Another client reads D2, writes back D3;

handled by server SY:
D3 ([SX,2], [SY,1])

• Another client reads D2, writes back D4;
handled by server SZ:

D4 ([SX,2], [SZ,1])
•

CSE 444 - Winter 2019 28

Vector Clocks: Example

• A client writes D1 at server SX:
D1 ([SX,1])

• Another client reads D1, writes back D2; also handled
by server SX:

D2 ([SX,2]) (D1 garbage collected)
• Another client reads D2, writes back D3;

handled by server SY:
D3 ([SX,2], [SY,1])

• Another client reads D2, writes back D4;
handled by server SZ:

D4 ([SX,2], [SZ,1])
• Another client reads D3 and D4: CONFLICT !

CSE 444 - Winter 2019 29

Vector Clocks: Meaning

• A data item D[(S1,v1),(S2,v2),…] means a value that
represents version v1 for S1, version v2 for S2, etc.

• If server Si updates D, then:
– It must increment vi, if (Si, vi) exists
– Otherwise, it must create a new entry (Si,1)

CSE 444 - Winter 2019 30

Vector Clocks: Conflicts

• A data item D is an ancestor of D’ if for all
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’

• Otherwise, D and D’ are on parallel branches,
and it means that they have a conflict that
needs to be reconciled semantically

CSE 444 - Winter 2019 31

(Sloppy) Quorum Read/Write

• Parameters:
– N = number of copies (replicas) of each object
– R = minimum number of nodes that must participate

in a successful read
– W = minimum number of nodes that must participate

in a successful write
• Quorum: R+W > N
• Sloppy Quorum (Dynamo): allow R+W ≤ N

– Allow fewer than N to get better latency

CSE 444 - Winter 2019 32

Operation Execution

• Write operations
– Initial request sent to coordinator
– Coordinator generates vector clock & stores locally
– Coordinator forwards new version to all N replicas
– If at least W-1 < N-1 nodes respond then success!

• Read operations
– Initial request sent to coordinator
– Coordinator requests data from all N replicas
– Once gets R responses, returns data

• Sloppy quorum: Involve first N healthy nodes
CSE 444 - Winter 2019 33

Amazon DynamoDB

Additional functionality:
• Both document and key-value store models
• Offers secondary indexes to enable queries over non-key attributes

– So can support selection and projection queries
• Offers choice of eventual consistent vs strongly consistent read

Try Amazon DynamoDB
http://aws.amazon.com/dynamodb/

CSE 444 - Winter 2019 34

http://aws.amazon.com/dynamodb/

Amazon DynamoDB Data Model

• Tables containing Items
– Items are described with attributes
– One attribute must be the primary key

• Primary key can be a single partition key attribute
• Or a pair of (partition key k1, sort key k2)

– Items partitioned across nodes on k1
– Sorted within the node on k2

CSE 444 - Winter 2019 35

Amazon DynamoDB Querying

• Selection and projection queries

– Equality predicates on primary key

– Must create secondary indexes to query other

attributes. Also equality predicates

– Can specify attributes to return (projection)

– Can specify path notation for document attributes

CSE 444 - Winter 2019 36

Amazon DynamoDB Consistency

• Eventually consistent read

– “When you read data from a DynamoDB table, the response

might not reflect the results of a recently completed write

operation. The response might include some stale data.

However, if you repeat your read request after a short time, the

response should return the latest data.”

• Strongly consistent read

– “When you request a strongly consistent read, DynamoDB

returns a response with the most up-to-date data, reflecting the

updates from all prior write operations that were successful.

Note that a strongly consistent read might not be available in

the case of a network delay or outage.”

CSE 444 - Winter 2019 37

CSE 444: Database Internals

Lecture 27
NewSQL

38CSE 444 - Winter 2018

GUARANTEES

SCALABILITY

TRADITIONAL

NEWSQLNOSQL

WEAK
(None/Limited)

STRONG
(ACID)

LOW
(One Node)

HIGH
(Many Nodes)

39Slide from Andy Pavlo @ CMU

Some Popular NewSQL Systems

• H-Store
– Research system from Brown U., MIT, CMU, and Yale
– Commercialized as VoltDB

• Hekaton
– Microsoft
– Fully integrated into SQL Server

• Spanner
– Google

40

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

Measured CPU Cycles

H-STORE INSIGHT

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008. Slide from Andy Pavlo @ CMU

TRADITIONAL DBMS:

H-Store Key Ideas
• Main-memory storage

– Avoids disk IO costs / buffer pool costs
– Durability through snapshots + cmd log

– Replication

• Serial execution
– One database partition per thread on one core
– Avoid overheads related to locking

• All transactions are stored procedures
– Command logging avoids heavy recovery overheads

• Avoid distributed transactions
– But when needed, run 2PC

42

Japanese “American Idol”
VOTER BENCHMARK

Slide from Andy Pavlo @ CMU
43

Transaction
Execution

Ap
pl

ica
tio

n

PARTITIONS

SINGLE-THREADED
EXECUTION ENGINES

Transaction
Result

44

CMD LOGSNAPSHOTS

Procedure Name
Input Parameters

run(phoneNum, contestantId, currentTime) {
result = execute(VoteCount, phoneNum);
if (result > MAX_VOTES) {

return (ERROR);
}
execute(InsertVote, phoneNum,

contestantId,
currentTime);

return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)
FROM votes
WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
VALUES (?, ?, ?);

STORED PROCEDURE

Slide from Andy Pavlo @ CMU

Japanese “American Idol”
VOTER BENCHMARK

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8

H-Store

25x

0

10,000

20,000

30,000

40,000

50,000

1 2 3 4 5 6 7 8

TXN/SEC CPU CORES

MySQL Postgres

Slide from Andy Pavlo @ CMU
45

Hekaton

• Focus: DBMS with large main memories and
many core CPUs

• Integrated with SQL Server

• Key user-visible features
– Simply declare a table “memory resident”
– Hekaton tables are fully durable and transactional,

though non-durable tables are also supported
– Query can touch both Hekaton and regular tables

46

Hekaton Key Details

• Idea: To increase transaction throughput must
decrease number of instructions / transaction

• Main-memory DBMS
– Optimize indexes for memory-resident data
– Durability by logging and checkpointing records to

external storage

• No partitioning
– Any thread can touch any row of any table

• No locking
– Uses a new MVCC method for isolation

47

Hekaton More Details

• Optimized stored procedures
– Compile statements and stored procedures into

customized, highly efficient machine code

48

Conclusion

• Many innovations recently in
– Big data analytics
– Transaction processing at very large scale

• Many more problems remain open

• This course teaches foundations

• Innovate with an open mind!

50

