
CSE 444: Database Internals

Lecture 23
Spark

1CSE 444 - Winter 2019

References

• Spark is an open source system from Berkeley

• Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing.
Matei Zaharia et. al. NSDI’12.

CSE 444 - Winter 2019 2

Motivation

• Goal: Better use distributed memory in a cluster

• Observation:

– Modern data analytics involves iterations
– Users also want to do interactive data mining

– In both cases, want to keep intermediate data in

memory and reuse it

– MapReduce does not support this scenario well

• Requires writing data to disk between jobs

CSE 444 - Winter 2019 3

Approach

• New abstraction: Resilient Distributed Datasets

• RDD properties
– Parallel data structure
– Can be persisted in memory
– Fault-tolerant
– Users can manipulate RDDs with rich set of operators

CSE 444 - Winter 2019 4

RDD Details

• An RDD is a partitioned collection of records
– RDD’s are typed: RDD[Int] is an RDD of integers

• An RDD is read only
– This means no updates to individual records
– This is to contrast with in-memory key-value stores

• To create an RDD
– Execute a deterministic operation on another RDD
– Or on data in stable storage
– Example operations: map, filter, and join

CSE 444 - Winter 2019 5

RDD Materialization

• Users control persistence and partitioning

• Persistence
– Should we materialize this RDD in memory?

• Partitioning
– Users can specify key for partitioning an RDD

CSE 444 - Winter 2019 6

Let’s think about it…

• So RDD is a lot like a view in a parallel engine

• A view that can be materialized in memory

• A materialized view that can be physically tuned
– Tuning: How to partition for maximum performance

CSE 444 - Winter 2019 7

Spark Programming Interface

• RDDs implemented in new Spark system

• Spark exposes RDDs though a language-
integrated API similar to DryadLINQ but in Scala

• Later Spark was extended with SQL

CSE 444 - Winter 2019 8

Why Scala?
From Matei Zaharia (Spark lead author): “When we started Spark, we
wanted it to have a concise API for users, which Scala did well. At the
same time, we wanted it to be fast (to work on large datasets), so
many scripting languages didn't fit the bill. Scala can be quite fast
because it's statically typed and it compiles in a known way to the
JVM. Finally, running on the JVM also let us call into other Java-
based big data systems, such as Cassandra, HDFS and HBase.

Since we started, we've also added APIs in Java (which became
much nicer with Java 8) and Python”

https://www.quora.com/Why-is-Apache-Spark-implemented-in-Scala

CSE 444 - Winter 2019 9

Querying/Processing RDDs

• Programmer first defines RDDs through
transformations on data in stable storage
– Map
– Filter
– …

• Then, can use RDDs in actions
– Action returns a value to app or exports to storage
– Count (counts elements in dataset)
– Collect (returns elements themselves)
– Save (output to stable storage)

CSE 444 - Winter 2019 10

Example (from paper)

Search logs stored in HDFS

lines = spark.textFile(“hdfs://…”)
errors = lines.filter(_.startsWith(“Error”))
errors.persist()
errors.collect()
errors.filter(_.contains(“MySQL”)).count()

CSE 444 - Winter 2019 11

More on Programming Interface

• Large set of pre-defined transformations:
– Map, filter, flatMap, sample, groupByKey,

reduceByKey, union, join, cogroup, crossProduct, …

• Small set of pre-defined actions:
– Count, collect, reduce, lookup, and save

• Programming Interface includes iterations

CSE 444 - Winter 2019 12

More Complex Example

CSE 444 - Winter 2019 13[From Zaharia12]

Spark Runtime

CSE 444 - Winter 2019 14[From Zaharia12]

1) Input data in HDFS
Or other Hadoop
input source

2) User writes
driver program

3) System ships code
to workers

Query Execution Details

• Lazy evaluation
– RDDs are not evaluated until an action is called

• In memory caching
– Spark workers are long-lived processes
– RDDs can be materialized in memory in workers
– Base data is not cached in memory

CSE 444 - Winter 2019 15

Key Challenge

• How to provide fault-tolerance efficiently?

CSE 444 - Winter 2019 16

Fault-Tolerance Through Lineage

Represent RDD with 5 pieces of information
• A set of partitions
• A set of dependencies on parent partitions

– Distinguishes between narrow (one-to-one)
– And wide dependencies (one-to-many)

• Function to compute dataset based on parent
• Metadata about partitioning scheme and data

placement
RDD = Distributed relation + lineage

CSE 444 - Winter 2019 17

More Details on Execution

CSE 444 - Winter 2019 18
[From Zaharia12]

Scheduler builds a DAG of
stages based on lineage
graph of desired RDD.

Pipelined execution
within stages

Synchronization barrier
with materialization
before shuffles

If a task fails, re-run it
Can checkpoint RDDs to disk

Latest Advances

CSE 444 - Winter 2019 19

Image from: http://spark.apache.org/

Where to Go From Here

• Read about the latest Hadoop developments
– YARN

• Read more about Spark
• Learn about GraphLab/Dato
• Learn about Impala, Flink, Myria, etc.
• … many other big data systems and tools...

• Also good to know latest cloud offering: Google,
Microsoft, and Amazon

CSE 444 - Winter 2019 20

