CSE 444: Database Internals

Lectures 20-21
Parallel DBMSs

CSE 444 - Winter 2019

What We Have Already Learned

» Overall architecture of a DBMS

« Internals of query execution:
— Data storage and indexing
— Buffer management
— Query evaluation including operator algorithms
— Query optimization

« Internals of transaction processing:
— Concurrency control: pessimistic and optimistic
— Transaction recovery: undo, redo, and undo/redo

CSE 444 - Winter 2019 2

Where We Are Headed Next

» Scaling the execution of a query
— Parallel DBMS
— MapReduce
— Spark and Myria

» Scaling transactions
— Distributed transactions
— Replication

» Scaling with NoSQL and NewSQL

CSE 444 - Winter 2019

Reading Assignments
* Main textbook Chapter 20.1

« Database management systems.
Ramakrishnan&Gehrke.
Third Ed. Chapter 22.11

CSE 444 - Winter 2019 4

DBMS Deployment: Local

@

Application

Great for one application k

DBMS

(could be more) and one
_user.
Desktop

Data files on disk

CSE 444 - Winter 2019 5

DBMS Deployment: Client/Server

Great for many apps and
many users

connection >

]
B s
L

CSE 444 - Winter 2019 Applications

DBMS Deployment: 3 Tiers

' Great for web-based
applications

Connection
(e.g., JDBC

&
&
HTTP/SSL

&

Browser

L]
— |
]

Data files

DB Server

CSE 444 -

Web Server &
App Server

DBMS Deployment: Cloud

(Great for web-based
applications

Connection

HTTP/SSL

How to Scale?
Ty
| E |
:] N
msens | &
o
| = \
(Connection | J%ﬁ)ﬁﬁlexi - @

(e.g., JDBC) 1
| HTTP/SSL
I

I
\Y
| &
-
Use many Web servers: Easy!
Tymerzots Browser

gad

How to Scale?

* We can easily replicate the web servers and
the application servers

* We cannot so easily replicate the database
servers, because the database is unique

* We need to design ways to scale up the DBMS

CSE 444 - Winter 2019 1

Many DBMS

instances: HARD to Scale?

\

|

—1 HTTP/SSL
|
I

-
- Web Server Farm (A\
- Winter 2019
Browser

L.

iy

|

P

/ ' I

==k ' I

S est &

| =) 1)

'ea! /E I /

I3 I ! — http 3

| [} | Connection y JW - @
(e.g., JDBC)

I I

| I

I I

|

How to Scale a DBMS?

E;—E¥

- Scale up -

— = / \;;
E — A more
D powerful server
More servers,
one database

Scale out

What to scale?

« OLTP: Transactions per second
— OLTP = Online Transaction Processing

* OLAP: Query response time
— OLAP = Online Analytical Processing

CSE 444 - Winter 2019 13

Scaling Transactions Per Second

* Amazon

* Facebook

* Twitter

... your favorite Internet application...
* Goal is to scale OLTP workloads

* We will get back to this next week

CSE 444 - Winter 2019 14

Scaling Single Query
Response Time

* Goal is to scale OLAP workloads

« That means the analysis of massive datasets

CSE 444 - Winter 2019 15

This Week: Focus on Scaling a
Single Query

CSE 444 - Winter 2019 16

Big Data

* Buzzword?

Definition from industry:

— High Volume hito://www gartner.com/newsroom/id/1731916
— High Variety
— High Velocity

CSE 444 - Winter 2019 17

Big Data

Volume is not an issue

» Databases do parallelize easily; techniques available
from the 80’s
— Data partitioning
— Parallel query processing

» SQL is embarrassingly parallel

* We will learn how to do this

CSE 444 - Winter 2019 18

http://www.gartner.com/newsroom/id/1731916

Big Data

New workloads are an issue

« Big volumes, small analytics
— OLAP queries: join + group-by + aggregate
— Can be handled by today’s RDBMSs (e.g., Teradata)

« Big volumes, big analytics

— More complex Machine Learning, e.g. click
prediction, topic modeling, SVM, k-means

— Requires innovation — Active research area

CSE 444 - Winter 2019 19

Data Analytics Companies

Fifteen years ago, explosion of db analytics companies

« Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

Vertica founded in 2005 and acquired by HP in 2011; A parallel,
column-store shared-nothing DBMS

DATAIllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (in two lectures). SQL on top of MapReduce
Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

CSE 444 - Winter 2019 20

Big Data Landscape 2016 (Version 3.0)
Infrastructure Analytics
ooy) s E

Cross-Infrastructure/Analytics

ST 6sas B8 () - R vmuere TIECO

Two Fundamental Approaches to
Parallel Data Processing

» Parallel databases, developed starting with the
80s (this lecture)

— For both OLTP (transaction processing)
— And for OLAP (decision support queries)

» MapReduce, first developed by Google,
published in 2004 (in two lectures)
— Only for decision support queries

Today we see convergence of the two approaches ‘

22

Architectures for Parallel DMBSs

Figure 1 - Types of database architectt

Shared-Disk (¢.9. Oracle RAC) Shared-Nothing (¢.9. Greenplum)
(9. server) | H
H Hetwork i
A Y .. W S— H e
- 5 : 3 i Hetwork
ﬂ a1 1 1 3 .

H H o8 0B

‘ H 'Twn H Y

m i - : |osk Dkl DSk Disk| (Disk |Disk
H SAN / Shared H
; Disk :

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 444 - Winter 2019 23

Our Focus: Shared-Nothing DBMS

CSE 444 - Winter 2019 24

Parallel Query Evaluation

» Multiple DBMS instances (= processes) also called
“nodes” execute on machines in a cluster
— One instance plays role of the coordinator
— Other instances play role of workers
* Applications interact with coordinator
» Workers execute queries
— Typically all workers execute the same plan
« Intra-operator parallelism & intra-query parallelism
— Some operations may execute at subsets of workers
— Workers can execute multiple queries at the same time
« Inter-query parallelism

CSE 444 - Winter 2019 25

Parallel Query Execution

SHUFFLE e
Consumer

Worker 1

Worker 2

SHUFFLE N
Consumer

@ - = = c = o

CSE 444 - Winter 2019 26

Parallel Query Evaluation

New operator: Shuffle
« Origin: Exchange operator from Volcano system
« Serves to re-shuffle data between processes

— Handles data routing, buffering, and flow control
« Two parts: ShuffleProducer and ShuffleConsumer
* Producer:

— Pulls data from child operator and sends to n consumers
— Producer acts as driver for operators below it in query plan

« Consumer:

— Buffers input data from n producers and makes it available
to operator through getNext() interface

CSE 444 - Winter 2019 27

Parallel DBMSs

Performance metrics

— Speedup: More nodes, same data -> higher speed
— Scaleup: More nodes, more data -> same speed
— Speed = query execution time

Key challenges
— Start-up costs
— Interference

— Skew

CSE 444 - Winter 2019 28

Parallel Query Processing

How do we compute these operations on a shared-
nothing parallel db?

« Selection: oa=123(R)

+ Group-by: Vasum@)|(R)
- Join: RS

Before we answer that: how do we store R (and S) on a
shared-nothing parallel db?

CSE 444 - Winter 2019 29

Data:

Horizontal Data Partitioning

Servers:

CSE 444 - Winter 2019 30

Horizontal Data Partitioning

Data: Servers:
=
K|A|B AR Ann o 2 Ts]
} L1
CSE 444 - Winter 2019 31

Horizontal Data Partitioning

Data: Servers:

K|lAlB AT g

};r

Which tuples
go to what server?

CSE 444 - Winter 2019 32

Horizontal Data Partitioning

» Relation R split into P chunks Ry, ..., Re.1, stored at
the P nodes

* Block partitioned
— Each group of k tuples goes to a different node
» Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P
» Range based partitioning on attribute A:
— Tuple tto chunkiif viq <tA <y
« For hash and range partitioning: Beware of skew

CSE 444 - Winter 2019 33

Horizontal Data Partitioning

All three choices are just special cases:
» For each tuple, compute bin = f(t)

« Different properties of the function f determine
hash vs. range vs. round robin vs. anything

CSE 444 - Winter 2019 34

Example: Teradata — Loading

A Customer Row is Inserted—l

Hashing Algorithm produces
/1. A Hash Bucket
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 444 - Winter 2019 35

Parallel Selection
Compute ga-y(R), or Gy1<p<2(R)
» On a conventional database: cost = B(R)

* Q: What is the cost on a parallel database with
P processors ?
— Block partitioned
— Hash partitioned
— Range partitioned

CSE 444 - Winter 2019 36

Parallel Selection
Compute 0a-(R), or Oy1<a<v2(R)
« On a conventional database: cost = B(R)

* Q: What is the cost on a parallel database with
P processors ? A: B(R) /P, but

— Block partitioned -- all servers do the work

— Hash partitioned -- some servers do the work

— Range partitioned -- some servers do the work
CSE 444 - Winter 2019 37

Basic Parallel GroupBy

Data: R(K,A,B,C) -- hash-partitioned on K
Query: yasume)(R)

Reshuffle R
on attribute A

CSE 444 - Winter 2019 38

Basic Parallel GroupBy

« Step 1: each server i partitions its chunk R; using
a hash function h(t.A) mod P: Rio, Ri1, ..., Rip-1

+ Step 2: server j computes Ya, sum(s) ON
ROJr R1,j: sy RP-1,j

CSE 444 - Winter 2019 39

Speedup and Scaleup

» Consider:
— Query: Yasumc)(R)
— Runtime: dominated by reading chunks from disk
 If we double the number of nodes P, what is the
new running time?

« If we double both P and the size of R, what is
the new running time?

CSE 444 - Winter 2019 40

Speedup and Scaleup

» Consider:
- Quel’yi VA,sum(C)(R)
— Runtime: dominated by reading chunks from disk
 If we double the number of nodes P, what is the
new running time?
— Half (each server holds %2 as many chunks)
 If we double both P and the size of R, what is
the new running time?
— Same (each server holds the same # of chunks)

CSE 444 - Winter 2019 41

Basic Parallel GroupBy

Can we do better?
* Sum?

+ Count?

* Avg?

* Max?

* Median?

CSE 444 - Winter 2019 42

Basic Parallel GroupBy

Can we do better?

* Sum?

« Count? Distributive Algebraic Holistic
*+ Avg? iﬂméi‘uﬁﬁf;mﬁ?; avgs(l?r)n(zB)/count(B) median(E)
* Max? Sl

* Median?

YES

« Compute partial aggregates before shuffling

CSE 444 - Winter 2019 43

Example Query with Group By

SELECT a, max(b) as topb
FROM R WHERE a >0

GROUP BY a
Machine 1 Machine 2 Machine 3
1/3of R CSEH3- @R 2019 1/30of R 4

Machine 1 Machine 2 Machine 3

1/3 of R CSEY3- &R 2019 1/3 of R 45

Parallel Join: R x5 S

« Data: R(K1,A, C), S(K2, B, D)
« Query: R(K1,A,C) x S(K2,B,D)

CSE 444 - Winter 2019 46

Parallel Join: R x5 S

+ Data: R(K1,A, C), S(K2, B, D)
* Query: R(K1,A,C) x S(K2,B,D)

P T —
Each server computes
the join locally

Reshuffle R on R.A
and Son S.B

Initially, both R and S are horizontally partitioned on K1 and K2

CSE 444 - Winter 2019 47

Parallel Join: R x5 S

* Step 1
— Every server holding any chunk of R partitions its
chunk using a hash function h(t.A) mod P

— Every server holding any chunk of S partitions its
chunk using a hash function h(t.B) mod P

» Step 2:

— Each server computes the join of its local fragment
of R with its local fragment of S

CSE 444 - Winter 2019 48

Data: R(K1,A, B), S(K2. B, C)

JoinonRB=S.B
Query: R(K1,A,B) x S(K2,B,C) oinon

Optimization for Small Relations
When joining R and S
* If|R]>> 9]

— Leave R where it is

— Replicate entire S relation across nodes

» Also called a small join or a broadcast join

CSE 444 - Winter 2019 50

R1’ S1 R2 S2
Kt |B [k2 [|||[xt [B | [k2 [B
JLSi??' 1 20 |pq201 [20 ||| [2 [s0 |Ddto1 [s0
20 102 50
4 20 M1 M2 202 50
Shuffle ><
R1 S1 R2 S2
K1 B K2 B K1 B K2 B
Partition 1 20 101 50 3 20 201 20
2 50 102 50 4 20 202 50
M1 M2
CSE 444 - Winter 2019 49
Other Interesting Parallel
Join Implementation
Skew:
« Some partitions get more input tuples than others

Reasons:
— Range-partition instead of hash
— Some values are very popular:
« Heavy hitters values; e.g. ‘Justin Bieber’
— Selection before join with different selectivities

« Some partitions generate more output tuples than
others

CSE 444 - Winter 2019 51

Some Skew Handling Techniques

If using range partition:
* Ensure each range gets same number of tuples
« Eg:{1,1,1,2,3,4,5,6}~>[1,2]and [3,6]

* Eg-depth v.s. eg-width histograms

CSE 444 - Winter 2019 52

Some Skew Handling Techniques

Create more partitions than nodes
« And be smart about scheduling the partitions

* Note: MapReduce uses this technique

CSE 444 - Winter 2019 53

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)

* Given R Ma-5 S

» Given a heavy hitter value R. A ="V’

(i.e. 'v’ occurs very many times in R)

Partition R tuples with value ‘v’ across all nodes
e.g. block-partition, or hash on other attributes

* Replicate S tuples with value ‘v’ to all nodes

* R = the build relation

» S = the probe relation

CSE 444 - Winter 2019 54

Order(gid, item, date), Line(item, ...)

Example: Teradata — Query Execution

Find all orders from today, along with the items ordered

CSE 444 - Winter 2019 55

SELECT *) B
FROM Order o, Line i o.item = i.item
WHERE o.item = i.item ‘
AND o.date = today() date = today()
Gean>

Order(gid, item, date), Line(item, ...)

Query Execution

—
h(o.item) h(o.item)

CGeelecD CelecD CelecD
date=today() date=today() date=today()
Cean> Cean> Cean>

Order o Order o Order o
AMP 1 AMP 2 AMP 3
CSE 444 - Winter 2019 56

Order(gid, item, date), Line(item, ...)

Query Execution

Ordero

AMP 1 AMP 2 AMP 3

h(i.item) h(i.item)

Ceean>

Order(gid, item, date), Line(item, ...)

Query Execution

o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 444 - Winter 2019 58

Item i Item i Item i
AMP 1 AMP 2 AMP 3
CSE 444 - Winter 2019 57
Example 2
SELECT *
FROMR, S, T

WHERE R.b =S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3
1/30fR,S, T AR GRS 1/30fR, SF

) S
Shuffling intermediate result from R < S
) D))
\ Shuffling R, S, and T |

bR G DD GRD @S DD | GRD G DETeD
oan B Gean D) Gean D Gean B Gean D &ean D | Gean B Gean S Gean D

OR.a-Tf>100

Machine 1 Machine 2 Machine 3
1/30fR,S, T 1/30ofR,S, T 1/30fR,S, T
CSE 444 - Winter 2019 60

OR.a-T.f>100

OR.a-Tf>100

OR.a-T.f>100

Broadcasting S and T

s i
@rd @D

Machine 1

1/30fR, S, T

(broadcasp Qroadcasg]

Machine 2

1/30fR, S, T

CSE 444 - Winter 2019

(roadcasp Qroadca:

Machine 3

1/30fR, S, T
61

11

