2/27/19

CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Winter 2019 1

The Usual Reminders

* HW3 is due tonight
— Only a single problem

» Lab3 is due on Monday

* Quiz grades should be returned on
Gradescope tomorrow

CSE 444 - Winter 2019

Readings for Lectures 17-19

Main textbook (Garcia-Molina)

* Ch.17.2-4,18.1-3, 18.8-9

Second textbook (Ramakrishnan)

* Ch.16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science

and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Winter 2019 3

Transaction Management

Two parts:
» Concurrency control: ACID
* Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

CSE 444 - Winter 2019

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500
ey

UPDATE Account2
SET balance = balance + 500
COMMIT

CSE 444 - Winter 2019 5

Recovery

Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Data center failures Remote backups or

replicas
System failures: DATABASE
e.g. power RECOVERY

System Failures
» Each transaction has internal state

* When system crashes, internal state is lost
— Don’t know which parts executed and which didn’t
— Need ability to undo and redo

CSE 444 - Winter 2019 7

2/27/19

=eap Buffer Manager Review

WRITE Page requests from higher-level code
Files and access methods
Buffer pool manager

Buffer pool

Disk
sk page Main

Free frame—— memory

INPUT
OUTPUT
Disk = collection
of blocks 1 page corresponds

to 1 disk block

choice of frame dictated
by replacement policy

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

« Enables higher layers of the DBMS to
assume that needed data is in main memory

» Caches data in memory. Problems when
crash occurs:
— If committed data was not yet written to disk
— If uncommitted data was flushed to disk

CSE 444 - Winter 2019 9

Transactions

* Assumption: the database is composed
of elements.

» 1 element can be either:
—1 page = physical logging
— 1 record = logical logging

» Aries uses physiological logging
— (will discuss later)

CSE 444 - Winter 2019 10

Primitive Operations of

Transactions

+ READ(X,t)

— copy element X to transaction local variable t
+ WRITE(Xt)

— copy transaction local variable t to element X
» INPUT(X)

— read element X to memory buffer
+ OUTPUT(X)

— write element X to disk

CSE 444 - Winter 2019 1"

Running Example

BEGIN TRANSACTION

READ(A,t);

t:=1*2; Initially, A=B=8.

WRITE(A,t); Atomicity requires that either
READ(B,b) (2)T does mot commit ancAc=.

t:=
WR
CcO

Will look at various crash scenarios

What behavior do we want in each case?

CSE 444 - Winter 2019 12

2/27/19

READ(A1); t := t'2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B, 1)

Transaction

Buffer pool

Disk

Action t

Mem A

Mem B

Disk A

Disk B

INPUT(A)

8

READ(A 1)

t=t2

WRITE(A 1)

INPUT(B)

READ(B 1)

t=t2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

= t*2; WRITE(A t);
= t*2; WRITE(B,1)

READ(A 1);
READ(B,t);

COMMIT

Transaction

Buffer pool

Disk

Action t

Mem A

Mem B

Disk A | Disk B

INPUT(A)

8

READ(A) 8

8

t=t2

WRITE(A.t)

INPUT(B)

READ(B.1)

t=t2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

COMMIT

READ(A1); t := t'2; WRITE(A,);
READ(B,t); t := t'2; WRITE(B,t)

Transaction

Buffer pool

Disk

;1= t'2; WRITE(A t);
= t*2; WRITE(B,1)

Action t

Mem A

Mem B

Disk A

Disk B

INPUT(A)

8

READ(A 1) 8

8

t=t*2 16

8

WRITE(A.1)

INPUT(B)

READ(B 1)

t=t*2

WRITE(B,1)

OUTPUT(A)

OUTPUT(B)

COMMIT

Transaction

Buffer pool

Disk

Action t

Mem A

Mem B

Disk A | Disk B

INPUT(A)

8

READ(A 1) 8

8

t=t2 16

8

WRITE(A.t) 16

16

@ (0o | Co
o 0o | Co

INPUT(B)

READ(B.t)

t=t2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

COMMIT

READ(A1); t := t'2; WRITE(A,t);
READ(B,t); t := t'2; WRITE(B,t)

Transaction

Buffer pool

Disk

Action t

Mem A

Mem B

Disk A

Disk B

INPUT(A)

8

READ(A 1) 8

8

t=t2 16

8

WRITE(A 1) 16

16

INPUT(B) 16

16

@ | 0o | |

@ | 0 | o |

READ(B 1)

t=t2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

COMMIT

READ(A b); t := t'2; WRITE(At);
READ(B,t); t := t'2; WRITE(B,1)

Transaction

Buffer pool

Disk

Action t

Mem A

Mem B

Disk A | Disk B

INPUT(A)

8

READ(A) 8

8

t=t2 16

8

WRITE(A.t) 16

16

INPUT(B) 16

16

READ(B.t) 8

16

© | 0o |00 0o | 0O
© | 0o |0 (0o | GO

t=t2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

COMMIT

2/27/19

READ(At); t := t*2; WRITE(At); READ(A,t); t := t*2; WRITE(At);
READ(B,t); t := t*2; WRITE(B,t) READ(B,1); t := t*2; WRITE(B,)
Transaction Buffer pool Disk Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8 INPUT(A) 8 8 8
READ(A) 8 8 8 8 READ(At) 8 8 8 8
t=t2 16 8 8 8 t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8 INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8 t=t*2 16 16 8 8 8
WRITE(B,t) WRITE(B,t) 16 16 16 8 8
OUTPUT(A) OUTPUT(A)
OUTPUT(B) OUTPUT(B)
COMMIT 9 COMMIT 0
READ(At); t := t*2; WRITE(At); READ(A,t); t := t*2; WRITE(At);
READ(B,t); t := t*2; WRITE(B,t) READ(B,); t := t*2; WRITE(B,)
Transaction Buffer pool Disk Transaction Buffer pool Disk
Action t MemA | MemB | Disk A | DiskB Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8 INPUT(A) 8 8 8
READ(At) 8 8 8 8 READ(At) 8 8 8 8
t=t2 16 8 8 8 t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8 INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8 t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8 OUTPUT(A) 16 16 16 16 8
OUTPUT(B) OUTPUT(B) 16 16 16 16 16
COMMIT 1 COMMIT 2

Yes it's bad: A=16, B=8....
Action t MemA | MemB | Disk A | DiskB Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8 INPUT(A) 8 8 8
READ(At) 8 8 8 8 READ(At) 8 8 8 8
t=t2 16 8 8 8 t=t*2 16 8 8 8
WRITE(A t) 16 16 8 8 WRITE(A) 16 16 8 8
INPUT(B) 16 16 8 8 8 INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8 t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 WRITE(B,t) 16 16 16 8 8
~1- | 1|
OUTPUT(A) 16 16 16 16 8§ m;g;g OUTPUT(A) 16 16 16 16 8 c:s\n/!\rg
OUTPUT(B) 16 16 16 16 16 OUTPUT(B) 16 16 16 16 16
COMMIT 3 COMMIT 4

2/27/19

Is this bad ?

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A) 8 8 8 8
t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 Cm
COMMIT ‘Fﬁg
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 %in/l\r%
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT 7

Isthisbad ?| | Yesit's bad: A=B=16, but not committed
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16§m
COMMIT VI:\Hg
Action t MemA | MemB | DiskA | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8 s
WRITE(B,t) 16 16 16 8 8 =" ceent 5]
OUTPUT(A) 16 16 16 16 8 ‘w/\/\lg
OUTPUT(B) 16 16 16 16 16
COMMIT 8

OUTPUT can also happen after COMMIT (details coming) ‘

Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(At) 8 8 8 8

t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

OUTPUT can also happen after COMMIT (details coming) ‘
Action t MemA | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 = crsn
OUTPUT(B) 16 16 16 16 16 0

2/27/19

Atomic Transactions

* FORCE or NO-FORCE
— Should all updates of a transaction be forced to
disk before the transaction commits?
+ STEAL or NO-STEAL

— Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSE 444 - Winter 2019 31

Force/No-steal

+ FORCE: Pages of committed
transactions must be forced to disk
before commit

* NO-STEAL: Pages of uncommitted
transactions cannot be written to disk

Easy to implement (how?) and ensures atomicity

CSE 444 - Winter 2019 32

No-Force/Steal

« NO-FORCE: Pages of committed
transactions need not be written to disk

« STEAL: Pages of uncommitted
transactions may be written to disk

In either case, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

CSE 444 - Winter 2019 33

Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

» Forces log entries to disk as needed

» After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Winter 2019 34

Policies and Logs

NO-STEAL STEAL
Lab 3 Undo Log
Redo Log Undo-Redo Log

CSE 444 - Winter 2019 35

UNDO Log

FORCE and STEAL

CSE 444 - Winter 2019 36

2/27/19

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
Undo Logging <STARTT-
INPUT(A) 8 8 8
Log records READ(A/t) 8 8 8 8
« <START T> t=t2 16 8 8 8
— transaction T has begun WRITE(At) 16 16 8 8 <TA8>
+ <COMMIT T> INPUT(B) [16 16 8 8 8
— T has committed READ(B,t) 8 16 8 8 8
* <ABORT T> t=t2 16 16 8 8 8
— T has aborted WRITEBY | 16 16 16 8 8 <T,B,8>
o <T,X,v> ouTpPuT(A)| 16 16 16 16 8
— T has updated element X, and its old value was v outpuT®)| 16 16 16 16 16
— Idempotent, physical log records COMMIT <COMMIT T>
CSE 444 - Winter 2019 37 CSE 447 - Winter 2019 38
Action t MemA | Mem B | Disk A | DiskB UNDO Log Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T> <START T>
INPUT(A) 8 8 8 INPUT(A) 8 8 8
READ(At) 8 8 8 8 READ(A) 8 8 8 8
t=tr2 16 8 8 8 t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA8> WRITEAL | 16 16 8 8 <TA8>
INPUT(B) 16 16 8 8 8 INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=tr2 16 16 8 8 8 t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <TB,8> WRITEBY | 16 16 16 8 8 <T,B,8>
OUTPUT(A) [16 16 16 16 8 ~1d | ouTtPuT(A)| 16 16 16 16 8
outPUT®)| 16 16 16 16 16 =, T ouTtPuTB)| 16 16 16 16 16 Lt
COMMIT <COMMIT T> COMMIT <COMMIT T>
WHAT DO WE DO 2 7 e 2o d WHAT DO WE DO ? || We UNDO by setting B=8 and A=8
Action t MemA | Mem B | Disk A | DiskB UNDO Log Action t MemA | Mem B | Disk A | DiskB UNDO Log
<START T> <START T>
INPUT(A) 8 8 8 INPUT(A) 8 8 8
READ(A,t) 8 8 8 8 READ(A) 8 8 8 8
t=tr2 16 8 8 8 t=t2 16 8 8 8
WRITE(A.t) 16 16 8 8 <TA8> WRITEAL | 16 16 8 8 <TA8>
INPUT(B) 16 16 8 8 8 INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=tr2 16 16 8 8 8 t=t2 16 16 8 8 8
WRITE(B,) 16 16 16 8 8 <TB,8> WRITEBY | 16 16 16 8 8 <T,B,8>
OUTPUT(A) [16 16 16 16 8 OUTPUT(A)| 16 16 16 16 8
OUTPUT(®)| 16 16 16 16 16 OUTPUT(B)| 16 16 16 16 16
COMMIT . <CZM%= COMMIT : . <COMMIT T>
What do we do now ? m What do we do now ? Nothing: log contains COMMIT

2/27/19

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A.Y) 8 8 8 8
t=tr2 16 8 /ﬁ 8
WRITEAY | 16\ s/ < | <1As>
ﬁ
INPUT{ C h |
Re rasn !
L ey il
WRITEBY) | 16 16 16 8 8 <TB.8>
outpuTa) | 16 16 16 16 8
outpuT®)| 16 16 16 16 16
commIT

TSE 444 - Winter 2019

73

After Crash

» This is all we see (for example):

After Crash

* This is all we see (for example):
* Need to step through the log

EEYSIEETM | <START T>
8 16 <TA8>
<TB,8>
CSE 444 - Winter 2019 44
After Crash

* This is all we see (for example):
* Need to step through the log
CEYSIEETEM [<START T>

8 16 <TAS8>
<T,B,8>

* What direction?

CSE 444 - Winter 2019 46

EEYSEETM [<START T>
8 1 <TA8>
<T,B,8>
CSE 444 - Winter 2019 45
After Crash

» This is all we see (for example):
* Need to step through the log

CEYSEETM [<START T> l

8 16 <TA8>
<T,B,8>

* What direction?

* In UNDO log, we start at the most
recent and go backwards in time

47

After Crash

This is all we see (for example):
Need to step through the log

CEYSIEETM | <START T>]

8 16 <TAS8>
<T,B,8>

* What direction?

In UNDO log, we start at the most
recent and go backwards in time .

2/27/19

After Crash

* This is all we see (for example):
* Need to step through the log
EEYSECETM [<START T>

8 = <TA8>
<T,B.8>

* What direction?

* In UNDO log, we start at the most
recent and go backwards in time .

After Crash

» This is all we see (for example):
* Need to step through the log
[EYSIEETM [<START T>

8 L <TA,8>
<T,B,8>

* What direction?

* In UNDO log, we start at the most
recent and go backwards in time 5

After Crash

* This is all we see (for example):

Need to step through the log
EETSIETTEM [<START T>

g 8 <TA8>
<TB.8>

What direction?

In UNDO log, we start at the most
recent and go backwards in time o

After Crash

* If we see NO Commit statement:
— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions have
been executed

* In we see that T has a Commit statement

— We don’t undo anything
— The transaction is atomic, since both it's actions have been
executed

CSE 444 - Winter 2019 52

Recovery with Undo Log
After system’s crash, run recovery manager

» Decide for each transaction T whether it is
completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T> =yes
— <START T>..iiiiiiiiiiiee, =no

» Undo all modifications by incomplete
transactions

CSE 444 - Winter 2019 53

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk
else ignore
<START T>: ignore

CSE 444 - Winter 2019 54

2/27/19

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v6>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to

read in the log ?

Question 3:
What happens if second
crash during recovery?

<T2’X2’V2>i ::IE .

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v6>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:
What happens if second
crash during recovery?

<T2,X2,v2>wj§ 5

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4 X4 v4>
<COMMIT T5>
<T3,X3,v3>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:

What happens if second
crash during recovery?

No problem! Log records are

<T2,X2,v2> j idempotent. Can reapply.

Action t Mem A | Mem B l Disk A | Disk B UNDO Log
—— <START T>
INPUT(A) // When must 8
READ(At) s K we force pages) s
=2 16 B to disk ? .
WRITE(At) 16 16 8 8 <T.A.8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 s s @
t=t2 16 16 8 s s o
WRITE(B,t) 16 16 16 8 8 <T.8,8>
OUTPUT(A) |5) 16 16 16 16 8 N
outruTe) |E 16 16 8 . e
commIT <COMMIT T>
CSE 447 - Winter 2019 r:t

Action t MemA | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t=t"2 16 8 8 8
WRITEALY [16 16 8 8 /<<T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t"2 16 8 8 8
WRITE(B,1) 16 16 8 8 —(<T,B,8> >
OUTPUT(@ 16 16 | 16—16 8
m./m/ 16 16 16 16
COMMIT FORG <COMMIT T}

|RULES: log entry before OUTPUT before COMMIT |

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

* Hence: OUTPUTs are done early,
before the transaction commits

CSE 444 - Winter 2019 60

10

Checkpointing

Checkpoint the database periodically

« Stop accepting new transactions

« Wait until all current transactions complete
* Flush log to disk

* Write a <CKPT> log record, flush

* Resume transactions

CSE 444 - Winter 2019 61

Undo Recovery with
Checkpointing

< >
“'.I'Q,Xg,vg other transactions

During recovery, (ag Igg%pleted)
Can stop at first SSTARTT2>
<CKPT> <START T3
<START T5>
<START T4>
<T1.X1,v1>
<T5,X5,v5> transactions T2,T3,T4,T5
<T4Xd,v4>
<COMMIT T5>
<T3.X3,v3>
<T2.X2,v2>

A

62

Nonquiescent Checkpointing

« Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database
is operational

* ldea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Winter 2019 63

Nonquiescent Checkpointing

» Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active
transactions. Flush log to disk

« Continue normal operation

* When all of T1,...,Tk have completed,
write <END CKPT>, flush log to disk

64

Undo Recovery with
Nonquiescent Checkpointing

earlier transactions plus
Need to read » T4,75,T6
Back to start of

<START CKPT T4, T5, T6>
T4,T5,T6

later transactions

Undo Recovery with
Nonquiescent Checkpointing

earlier transactions plus
Need to read N T4,75,76

Back to startof | ...
T4, T5, T6 ﬁ.START CKPT T4, T5, T6>

later transactions

<END CKPT>

}T4. T5, T6, plus

l later transactions

65

Q: do we need
<END CKPT>?

<END CKPT>

lﬁl, T5, T6, plus

l later transactions

66

2/27/19

11

Undo Recovery with
Nonquiescent Checkpointing

earlier transactions plus
Need to read N T4,75,T6

Back to start of
T4, T5, T6 .<“START CKPT T4, T5, T6>

T4, T5, T6, plus
later transactions

<END CKPT>

1 later transactions

2/27/19

Q: do we need
<END CKPT> Not really, it's implicit in seeing T4,T5,T6 commits

Implementing ROLLBACK

* Recall: a transaction can end in COMMIT
or ROLLBACK

* |ldea: use the undo-log to implement
ROLLBACK

* How ?
—LSN = Log Sequence Number

— Log entries for the same transaction are
linked, using the LSN’s

—Read log in reverse, using LSN pointers

CSE 444 - Winter 2019 68

<T9,X9,v9>

* Ré¢ |- IT
or (alll completed)
<CKPT>

- Id <START T2~
R(|<STARTT3

REDO Log

NO-FORCE and NO-STEAL

<START T5>
e H(q |<START T4>
<T1,X1,v1>
- <T5,X5,v56>
<T2,X1,v2>
T | <T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
- <T2,X2,v2>
69
Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
CSE 444 - Winter 2019 7

CSE 444 - Winter 2019 70
Is this bad ?
Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t=t"2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t"2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
Crash !
OUTPUT(B) 16 16 16 16 16
CSE 444 - Winter 2019 72

12

Is this bad ?

2/27/19

Yes, it's bad: A=16, B=8

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8 o Z
OUTPUT(B) 16 16 16 16 1GZ‘TN\IS

CSE 444 - Winter 2019

73

Is this bad ?

Is this bad ?

Yes, it's bad: lost update

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT R
Crash !
OUTPUT(A) 16 16 16 16 8 1(/\"?
OUTPUT(B) 16 16 16 16 16 |

CSE 444 - Winter 2019

75

Action t Mem A | Mem B | Disk A | Disk B
READ(A 1) 8 8 8 8
t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 |
CSE 444 - Winter 2019 74
Action t Mem A | Mem B | Disk A | Disk B
READ(At) 8 8 8 8
t=t"2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t=t"2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 k1
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2019

Is this bad ?

No: that's OK.

Action t Mem A | Mem B | Disk A | Disk B
READ(A,t) 8 8 8 8

t=t*2 16 8 8 8
WRITE(At) 16 16 8 8
READ(B,t) 8 16 8 8 8

t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

CSE 444 - Winter 2019

7

One minor change to the undo log:

Redo Logging

* <T,X,v>=T has updated element X, and
its new value is v

CSE 444 - Winter 2019

78

13

2/27/19

Action t Mem A | Mem B | Disk A | Disk B REDO Log Action t MemA | Mem B | Disk A | DiskB REDO Log
<START T> <START T>
READ(A,t) 8 8 8 8 READ(A 1) 8 8 8 8
t=t*2 16 8 8 8 t=t2 16 8 8 8
WRITE(A,t) 16 16 8 8 <TA,16> WRITE(A,t) 16 16 8 8 <TA,16>
READ(B,t) 8 16 8 8 8 READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8 t=t2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16> WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T> COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 OUTPUT(B) 16 16 16 16 16 crnt
CSE 444 - Winter 2019 79 CSE 444 - Winter 2019 80

Action t MemA | Mem B | DiskA | DiskB | REDO Log Recovery W|th Redo Log
<START T>
READ(AY s s s s After system’s crash, run recovery manager
=2 16 8 8 8 . .
ki « Step 1. Decide for each transaction T whether
WRITEGD [18 1 8 8 <TA16> it is committed or not
READBY) [8 16 8 8 8 — <START T>....<COMMIT T>.... =yes
t=t2 16 16 8 8 8 — <START T>....<ABORT T>....... =no
WRITEBY | 16 16 16 8 8 <TB,16> — <START T>...oiiiiiiiieiieeane =no
coMMIT <COMMIT T> » Step 2. Read log from the beginning, redo all
ouTPuT(A)| 16 16 16 16 8) updates of committed transactions
output®)| 16 16 16 16 16 ot
How do we recover ? | dWe REDO by setting A=16 and B=16 OSE 444 - Winer 2019 =

Recovery with Redo Log Nonquiescent Checkpointing

Fixivis - Write a <START CKPT(T1,...,Tk)>
<START T2> —— where T1,...,Tk are all active txn’s
<T2. X2. v2> Show actions .)
<START T3> during recovery * Flush ’[O.dISk al! blocks of committed
<T1,X3,v3> transactions (dirty blocks)

<COMMIT T2> * Meantime, continue normal operation
<T3,X4,v4>

v | <T1,X5yv5> * When all blocks have been written, write
@ﬁ? <END CKPT>

‘ END CKPT has different meaning here than in Undo log ‘

CSE 444 - Winter 2019 83 84

14

Nonquiescent Checkpointing

Action t Mem AJ/M»*"L“*J«kLDisk B REDO Log
When must <START T>
READ(A) s {\ we force pages /é
t=t2 16 8 el 8
WRITE(A,t) 16 16 8 8 <TA. 16>
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8 @
WRITE(B,t) 16 16 16 8 8 <TBA6>
COMMIT <COMMIT T>
OUTRUT(A) L 16 16 16 16 8
OUTRUT(B) g 16 16 16 16 16
CSE 444 - Winter 2019 86

<START T1>
<COMMIT T1>
Step 1: look for <START T4> Step 2: redo
The last <START CKPT T4, T5, T6> frorF thte
. earlies!
<END CKPT>
start of
All OUTPUT: T4,75,T6
s <END CKPT> : ;
of T1 are ignoring
known to be on disk transactions
. | <START CKPT T9, T10> committed
Ry earlier
Cannot
use CSE 444 - Winter 2019 85
Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A t) 8 8 8 8
t=t2 16 8 8 8
WRITEAY | 16 16 8 8 <TA,16>
READ(B,t) 8 16 8 8 8
t=t2 16 16 8 8 8
WRITEBY | 16 16 16 8 8 <TB,16>
coMMIT NO'STE_AL_’___’—QCOMMWﬁ
@TPUT(A) 16 16 16 | 46— 8
OUTPUTE) —1—| 16 16 16 16
|RULE: OUTPUT after COMMIT | o

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

NO-STEAL

* Hence: OUTPUTs are done Jate

CSE 444 - Winter 2019 88

Comparison Undo/Redo
+ Undo logging:

— OUTPUT must be done early

— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient

* Redo logging No-Steal/No-Force
— OUTPUT must be done late

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) — inflexible

« Would like more flexibility on when to OUTPUT:

undo/redo logging (next)
Steal/No-Force

CSE 444 - Winter 2019 90

Undo/Redo Logging
Log records, only one change

e <T,X,u,v>=T has updated element X, its
old value was u, and its new value is v

CSE 444 - Winter 2019 91

2/27/19

15

2/27/19

UndO/RedO_Logglng RUIe Action T MemA | MemB | DiskA | DiskB Log
<START T>
- REAT(At) 8 8 8 8
UR1: If T modifies X, then <T,X,u,v> must 2 o p o P
be written to disk before OUTPUT(X) wWRITEGAD | 16 6 s s <TABA6>
READ(B,t) 8 16 8 8 8
Note: we are free to OUTPUT early or late t=t2 16 1 8 8 ¢
relative to <COMMIT T> WRITE@B) | 16 16 16 8 8 <TB,8,16>
OUTPUT(A) | 16 16 16 16 8
<COMMIT T>
OUTPUT(B) | 16 16 16 16 16
CSE 444 - Winter 2019 92 Can OUTPUT whenever we want: before/after COMMIT 93

Recovery with Undo/Redo Log Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
* Redo all committed transaction, top-down <START T2>

: : T2, X2, v2
* Undo all uncommitted transactions, bottom-up Pl

<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v56>

After system’s crash, run recovery manager

CSE 444 - Winter 2019 94 CSE 444 - Winter 2019 95

Aries

» ARIES pieces together several techniques into a
comprehensive algorithm

AR| ES » Developed at IBM Almaden, by Mohan
* IBM botched the patent, so everyone uses it now

» Several variations, e.g. for distributed
transactions

CSE 444 - Winter 2019 96 CSE 444 - Winter 2019 97

16

Log Granularity

Two basic types of log records for update operations
» Physical log records

— Position on a particular page where update occurred

— Both before and after image for undo/redo logs

— Benefits: Idempotent & updates are fast to redo/undo
» Logical log records

— Record only high-level information about the operation

— Benefit: Smaller log

— BUT difficult to implement because crashes can occur in

the middle of an operation

CSE 444 - Winter 2019 98

2/27/19

ARIES Recovery Manager

Log entries:
* <START T> --when T begins
* Update: <T,X,u,v>
— T updates X, old value=u, new value=v
— Logical description of the change
« <COMMIT T> or <ABORT T> then <END>
* <CLR> - we’ll talk about them later.

CSE 444 - Winter 2019 100

ARIES Recovery Manager
Rule:

« If T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

CSE 444 - Winter 2019 101

LSN = Log Sequence Number
* LSN = identifier of a log entry

— Log entries belonging to the same TXN are linked
with extra entry for previous LSN

» Each page contains a pageLSN:
—LSN of log record for latest update to that page

ARIES Data Structures

» Active Transactions Table
— Lists all active TXN’s
— For each TXN: lastLSN = its most recent update LSN
* Dirty Page Table
— Lists all dirty pages
— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

* Write Ahead Log
— LSN, prevLSN = previous LSN for same txn

CSE 444 - Winter 2019 103

CSE 444 - Winter 2019 102
Wrio0(P7)
Wr200(P5)
Wr200(P6)
ARIES Data Structures
Wrio0(P5)
Dirty pages Log (WAL)
pagelD recLSN LSN | prevLSN |transID | pagelD |Log entry
P5 102 101 |- T100 P7
P6 103 102 |- T200 [P5
P7 101 103 | 102 T200 P6
104 |101 T100 P5
Active transactions Buffer Pool
transiD lastLSN P2
T100 104
T200 103

P5 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

17

ARIES Normal Operation

T writes page P
* What do we do ?

CSE 444 - Winter 2019 1056

2/27/19

ARIES Normal Operation

T writes page P
* What do we do ?

* Write <T,P,u,v> in the Log
* pageLSN=LSN

» prevLSN=lastLSN

* lastLSN=LSN

* recLSN=if isNull then LSN

CSE 444 - Winter 2019

106

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* What do we do ?

Buffer manager wants INPUT(P)
* What do we do ?

CSE 444 - Winter 2019 107

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

* Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* What do we do ?

CSE 444 - Winter 2019

108

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

* Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

» Create entry in Dirty Pages table
recLSN = NULL

CSE 444 - Winter 2019 109

ARIES Normal Operation

Transaction T starts
* What do we do ?

Transaction T commits/aborts
* What do we do ?

CSE 444 - Winter 2019

110

18

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits
* What do we do ?

CSE 444 - Winter 2019 R

2/27/19

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits

* Write <COMMIT T> in the log
* Flush log up to this entry

* Write <END>

CSE 444 - Winter 2019 112

Checkpoints

Write into the log

» Entire active transactions table
+ Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

CSE 444 - Winter 2019 13

ARIES Recovery

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash
3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 444 - Winter 2019 114

Announcements
* Lab 4 out tomorrow

* Lab 5 due dates extended

— No late days allowed (will take that into
consideration when setting deadline)

* HW 6 released tomorrow
— On parallel database concepts

CSE 444 - Winter 2019 16

1. Analysis Phase

+ Goal
— Determine point in log where to start REDO
— Determine set of dirty pages when crashed
« Conservative estimate of dirty pages
— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table
— Reprocess the log from the checkpoint
« Only update the two data structures
— Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Winter 2019 17

19

1. Analysis Phase

Log Checkpoint (crash)

¥ >
T IR

Where do we start

1. Analysis Phase

Log Chelckpoint (crash)
firstLSN=min(reqLSN)
Dirty pagelD |recLSN
pages

Active transID | lastLSN

txn

119

i = 7?2

firstLSN= 774 the REDO phase ?
Dll'ty pagelD |recLSN
pages
Active transID |lastLSN
txn

18
1. Analysis Phase
Log Chelckpoint (crash)

firstLSN [
Dirty 2geip [recLsn eplay hicon Treclsn
pages history ffffffffffffffff

Active transID |lastLSN

transID | lastLSN

txn

120

2. Redo Phase

Main principle: replay history

* Process Log forward, starting from
firstLSN

* Read every log record, sequentially

* Redo actions are not recorded in the log

* Needs the Dirty Page Table

CSE 444 - Winter 2019 121

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
* Redo the action P=u and WRITE(P)
» Only redo actions that need to be redone

CSE 444 - Winter 2019 122

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
» If P is not in Dirty Page then no update
* If recLSN > LSN, then no update
» Read page from disk:

If pageLSN >= LSN, then no update
» Otherwise perform update

CSE 444 - Winter 2019 123

2/27/19

20

2/27/19

2. Redo Phase: Details

What happens if system crashes during
REDO ?

CSE 444 - Winter 2019 124

2. Redo Phase: Details

What happens if system crashes during
REDO ?

We REDO again! The pageLSN will ensure
that we do not reapply a change twice

CSE 444 - Winter 2019 125

3. Undo Phase

« Cannot “unplay” history, in the same
way as we “replay” history

« WHY NOT ?

CSE 444 - Winter 2019 126

3. Undo Phase

« Cannot “unplay” history, in the same
way as we “replay” history

« WHY NOT ?
—Undo only the loser transactions

— Need to support ROLLBACK: selective
undo, for one transaction

* Hence, logical undo v.s. physical redo

CSE 444 - Winter 2019 127

3. Undo Phase

Main principle: “logical” undo
+ Start from end of Log, move backwards
» Read only affected log entries

* Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

* CLRs are redone, but never undone

CSE 444 - Winter 2019 128

3. Undo Phase: Details

» “Loser transactions” = uncommitted
transactions in Active Transactions Table

* ToUndo = set of lastLSN of loser transactions

CSE 444 - Winter 2019 129

21

3. Undo Phase: Details

While ToUndo not empty:
« Choose most recent (largest) LSN in ToUndo
« If LSN =regular record <T,P,u,v>:
— Undov
— Write a CLR where CLLR.undoNextLSN = LSN.prevLSN
e If LSN = CLR record:
— Don’tundo!

« if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Winter 2019 130

2/27/19

3. Undo Phase: Details

What happens if system crashes during

UNDO ?

CSE 444 - Winter 2019

132

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

We do not UNDO again ! Instead, each CLR
is a REDO record: we simply redo the
undo

CSE 444 - Winter 2019 133

22

