
CSE 444: Database Internals

Lectures 14
Transactions: Locking

1CSE 444 - Winter 2019

Announcements

• Many changes have been made to
assignments due dates because of snow days

• Calendar on course web page has up-to-date
information

• Will skip timestamp-based concurrency control
material to catch up schedule

CSE 444 - Winter 2019 2

Schedules with Aborted Transactions

CSE 444 - Winter 2019 3

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read
by T have already committed

CSE 444 - Winter 2019 4

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read
by T have already committed

CSE 444 - Winter 2019 5

Recoverable Schedules

6

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Winter 2019

Recoverable Schedules

7

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort
CSE 444 - Winter 2019How do we recover ?

Cascading Aborts

• If a transaction T aborts, then we need to abort
any other transaction T’ that has read an
element written by T

• A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSE 444 - Winter 2019 8

Avoiding Cascading Aborts

9

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Winter 2019

Without cascading abortsWith cascading aborts

Review of Schedules

Serializability

• Serial
• Serializable
• Conflict serializable
• View serializable

Recoverability

• Recoverable
• Avoids cascading

aborts

CSE 444 - Winter 2019 10

Scheduler

• The scheduler:
• Module that schedules the transaction’s actions,

ensuring serializability

• Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Winter 2019 11

Pessimistic Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction,

then wait
• The transaction must release the lock(s)

CSE 444 - Winter 2019 12

Notation

CSE 444 - Winter 2019 13

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 444 - Winter 2019 14

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule

But…

16

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

CSE 444 - Winter 2019Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

• In every transaction, all lock requests must
precede all unlock requests

• This ensures conflict serializability ! (will
prove this shortly)

CSE 444 - Winter 2019 17

Example: 2PL transactions

18

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

CSE 444 - Winter 2019Now it is conflict-serializable

Example with Multiple
Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

CSE 444 - Winter 2019 19

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

Two Phase Locking (2PL)

20

Theorem: 2PL ensures conflict serializability

CSE 444 - Winter 2019

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Winter 2019 21

Two Phase Locking (2PL)

22

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

23

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

24

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

25

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

A New Problem:
Non-recoverable Schedule

26

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort
CSE 444 - Winter 2019

Strict 2PL

• Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

• Schedule is recoverable
• Schedule avoids cascading aborts
• Schedule is strict: read book

CSE 444 - Winter 2019 27

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit 28CSE 444 - Winter 2019

Summary of Strict 2PL

• Ensures serializability, recoverability, and
avoids cascading aborts

• Issues: implementation, lock modes,
granularity, deadlocks, performance

CSE 444 - Winter 2019 29

The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
• Examine all READ(A) or WRITE(A) actions
• Add appropriate lock requests
• On COMMIT/ROLLBACK release all locks
• Ensures Strict 2PL !

CSE 444 - Winter 2019 30

The Locking Scheduler

Task 2: -- act on behalf of the system
Execute the locks accordingly

• Lock table: a big, critical data structure in a DBMS !
• When a lock is requested, check the lock table

– Grant, or add the transaction to the element’s wait list

• When a lock is released, re-activate a transaction
from its wait list

• When a transaction aborts, release all its locks
• Check for deadlocks occasionally

CSE 444 - Winter 2019 31

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

32

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - Winter 2019

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks

• Coarse grain locking (e.g., tables, predicate locks)
– Many false conflicts
– Less overhead in managing locks

CSE 444 - Winter 2019 33

Deadlocks
• Cycle in the wait-for graph:

– T1 waits for T2
– T2 waits for T3
– T3 waits for T1

• Deadlock detection
– Timeouts
– Wait-for graph

• Deadlock avoidance
– Acquire locks in pre-defined order
– Acquire all locks at once before starting

CSE 444 - Winter 2019 38

Lock Performance

CSE 444 - Winter 2019 39

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

CSE 444 - Winter 2019 42

Phantom Problem

Is this schedule serializable ?

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘gizmo’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

CSE 444 - Winter 2019 43

Phantom Problem

44

Suppose there are two blue products, X1, X2:

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2019

Phantom Problem

45

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2019This is conflict serializable ! What’s wrong ??

Phantom Problem

46

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 444 - Winter 2019Not serializable due to phantoms

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 444 - Winter 2019 47

Phantom Problem

• In a static database:
– Conflict serializability implies serializability

• In a dynamic database, this may fail due to
phantoms

• Strict 2PL guarantees conflict serializability,
but not serializability

48CSE 444 - Winter 2019

Dealing With Phantoms

• Lock the entire table, or
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !

CSE 444 - Winter 2019 49

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Winter 2019 50

ACID

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 444 - Winter 2019 51

Possible pbs: dirty and inconsistent reads

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 444 - Winter 2019 52

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

CSE 444 - Winter 2019 53

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSE 444 - Winter 2019 54

READ-ONLY Transactions

CSE 444 - Winter 2019 55

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

May improve
performance

56

Commercial Systems

Always check documentation!

• DB2: Strict 2PL

• SQL Server:

– Strict 2PL for standard 4 levels of isolation

– Multiversion concurrency control for snapshot isolation

• PostgreSQL: Snapshot isolation; recently:

seralizable Snapshot isolation (!)

• Oracle: Snapshot isolation

CSE 444 - Winter 2018

