

Office Hour Announcement

- The day labs are due
- No time to help debugging. Bring debugging problems to us before or after
- We will schedule ad-hoc extra office hours. We will post on the message board
$\left.\begin{array}{|c|}\hline \\ \text { Before We Go Into Query Plan } \\ \text { Costs... How do Updates Work? } \\ \text { (Insert/Delete) }\end{array}\right]$

Pushing Updates to Disk

- When inserting a tuple, HeapFile inserts it on a page but does not write the page to disk
- When deleting a tuple, HeapFile deletes tuple from a page but does not write the page to disk
- The buffer manager worries when to write pages to disk (and when to read them from disk)
- When need to add new page to file, HeapFile adds page to file on disk and then reads it through buffer manager

Query Optimization Summary

Goal: find a physical plan that has minimal cost

What is the cost of a plan?
For each operator, cost is function of CPU, IO, network bw Total_Cost = CPUCost + w_{10} IOCost+ $\mathrm{w}_{\mathrm{B} w}$ BWCost Cost of plan is total for all operators
In this class, we look only at IO

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
$-\mathrm{Eg} \cdot \operatorname{Cost}(\mathrm{V} \bowtie \mathrm{T})=3 \mathrm{~B}(\mathrm{~V})+3 \mathrm{~B}(\mathrm{~T})$
$-B(V)=T(V) /$ PageSize
$-T(V)=T(\sigma(R) \bowtie S)$

Query Optimization Summary

Goal: find a physical plan that has minimal cost

Know how to compute cost if know cardinalities
$-E g . \operatorname{Cost}(V \bowtie T)=3 B(V)+3 B(T)$
$-B(V)=T(V) /$ PageSize
$-T(V)=T(\sigma(R) \bowtie S)$
Cardinality estimation problem: e.g. estimate $T(\sigma(R) \bowtie S)$

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality) in a bottom-up fashion
- This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
- Hand-written formulas, similar to those we used for computing the cost of each physical operator

Database Statistics

- Number of tuples (cardinality) $T(R)$
- Indexes, number of keys in the index $V(R, a)$
- Number of physical pages $B(R)$
- Statistical information on attributes - Min value, Max value, $\mathrm{V}(\mathrm{R}, \mathrm{a})$
- Histograms
- Collection approach: periodic, using sampling

Size Estimation Problem
Q = SELECT list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond
Given $T(R 1), T(R 2), \ldots, T(R n)$ Estimate T(Q)
How can we do this ? Note: doesn't have to be exact.
CSE 444-Winter 2019

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Selectivity Factors for Conditions

- $\mathrm{A}=\mathrm{c} \quad /{ }^{*} \sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R})^{* /}$
- Selectivity $=1 / V(R, A)$
$A=c \quad / * \sigma_{A=c}(R) *$
- Selectivity $=1 / \mathrm{V}(\mathrm{R}, \mathrm{A})$
- $\mathrm{A}<\mathrm{c} \quad /^{*} \sigma_{\mathrm{A}<\mathrm{c}}(\mathrm{R})^{*} /$
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A))$

Selectivity Factors for Conditions

Selectivity Factors for Conditions

- $\mathrm{A}=\mathrm{c} \quad /{ }^{*} \sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R}) * /$
- Selectivity $=1 / V(R, A)$
- $\mathrm{A}<\mathrm{c} \quad /^{*} \sigma_{\mathrm{A}<\mathrm{c}}(\mathrm{R})^{* /}$
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A))$
- $\mathrm{A}=\mathrm{B} \quad /{ }^{*} \mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}$ */
- Selectivity = $1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then all values R.A occur in S.B
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $\mathrm{V}\left(\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{C}\right)=\mathrm{V}(\mathrm{R}, \mathrm{C}) \quad\left(\begin{array}{rl}\mathrm{V} \\ \mathrm{V} \\ \mathrm{S}, \mathrm{C})\end{array}\right)$
- Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator
Selectivity of $R \bowtie_{A=B} S$
Assume $V(R, A)<=V(S, B)$
- A tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$
$T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$
${ }^{\text {csE } 444-\text { - Winerer } 2019}$

Size Estimation for Join	
Example: - $T(R)=10000, T(S)=20000$ - $V(R, A)=100, V(S, B)=200$ - How large is $R \bowtie_{A=B} S$?	
(In class...)	
CSE 444. Where2019	${ }^{26}$

Complete Example	
Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity) - Some statistics - T (Supplier) = 1000 records - T(Supply) $=10,000$ records - B(Supplier) $=100$ pages - B(Supply) $=100$ pages - V(Supplier,scity) $=20, \mathrm{~V}($ Suppli - V (Supply,pno) $=2,500$ - Both relations are clustered - $M=11$	```SELECT sname FROM Supplier x, Supply y WHERE x .sid \(=\mathrm{y}\).sid and y .pno \(=2\) and x .scity \(=\) 'Seattle' and \(x\).sstate \(=\) ' WA '``` $s, \text { state })=10$
CSE 444-Winter 2019	

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities
$-B($ Supplier $)=100$ pa

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)
$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$
$\sigma_{\mathrm{age}=48}($ Empolyee $)=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}($ Empolyee $)=?$

			tog	ms		
Employee(ssn, name, age)						
$\begin{aligned} & \mathrm{T}(\text { Employee })=25000, \mathrm{~V}(\text { Empolyee }, \text { age })=50 \\ & \min (\text { age })=19, \max (\text { age })=68 \end{aligned}$						
$\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?$						
Age:	$0 . .20$	20.29	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500
Estimate $=1200 \quad$ CEEstifinabiter 201p* $80+5^{*} 500=2580 \quad 37$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Types of Histograms

- How should we determine the bucket boundaries in a histogram?

Histograms

Eq-width:

Age:	$0 . .20$	20.29	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	0.33	33.38	$38-43$	$43-45$	$45-54$	>54
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY?
- Not updated during database update, but recomputed periodically
- WHY?
- Multidimensional histograms rarely used
- WHY?

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY? All histograms are kept in main memory during query optimization; plus need fast access
- Not updated during database update, but recomputed periodically
- WHY? Histogram update creates a write conflict; would dramatically slow down transaction throughput
- Multidimensional histograms rarely used - WHY? Too many possible multidimensional histograms, unclear which ones to choose CSE 444 - Winter 2019

