CSE 444: Database Internals

Lecture 8 Operator Algorithms (part 2)

Announcements

- Lab 2 released new branch "lab2" contains instructions
- Lab 2 / part 1 due on Thursday
 - We will not run any tests So bugs are OK
- Homework 2 due on Friday
- Paper review for master's due on Friday

Outline

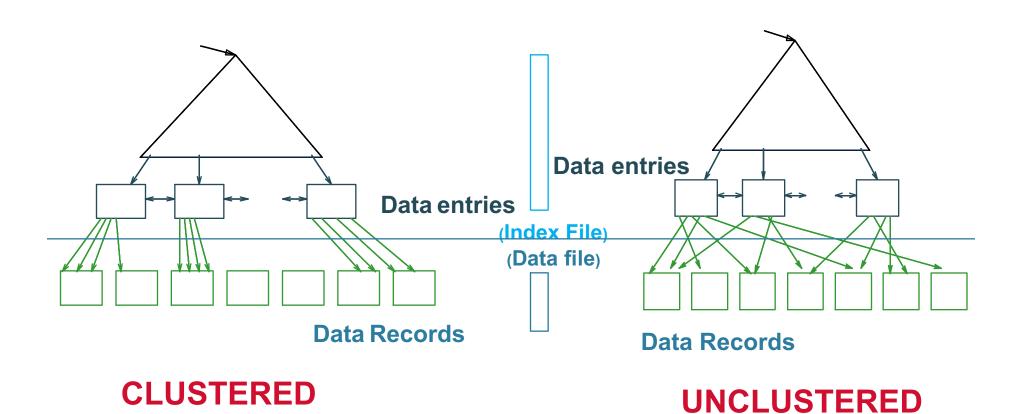
Join operator algorithms

- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Selection on equality: $\sigma_{a=v}(R)$

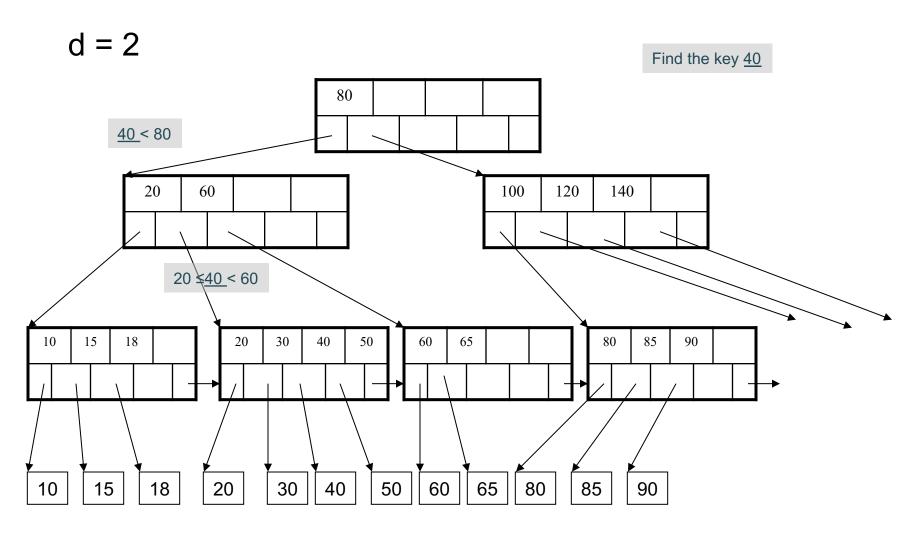
- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

B+ Trees



Note: can also store data records directly as data entries

B+ Tree Example



Selection on equality: $\sigma_{a=v}(R)$

- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a:
- Unclustered index on a:

Selection on equality: $\sigma_{a=v}(R)$

- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

Clustered index on a: B(R)/V(R,a)

Unclustered index on a: T(R)/V(R,a)

Selection on equality: $\sigma_{a=v}(R)$

- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: B(R)/V(R,a)
- Unclustered index on a: T(R)/V(R,a)

Note: we ignore I/O cost for index pages

- Table scan:
- Index based selection:

- Table scan: B(R) = 2,000 I/Os
- Index based selection:

• Example:
$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered:
 - If index is unclustered:

• Example:
$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered:

• Example:
$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Example:
$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Example:
$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

cost of $\sigma_{a=v}(R) = ?$

- Table scan: B(R) = 2,000 I/Os
- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson: Don't build unclustered indexes when V(R,a) is small!

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cost
 - -B(R) + T(R)*B(S)
- Index Nested Loop Join Cost
 - If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

Outline

Join operator algorithms

- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

- What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
 - Sorting
 - Hashing

Basic Terminology

A run in a sequence is an increasing subsequence

What are the runs?

2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50

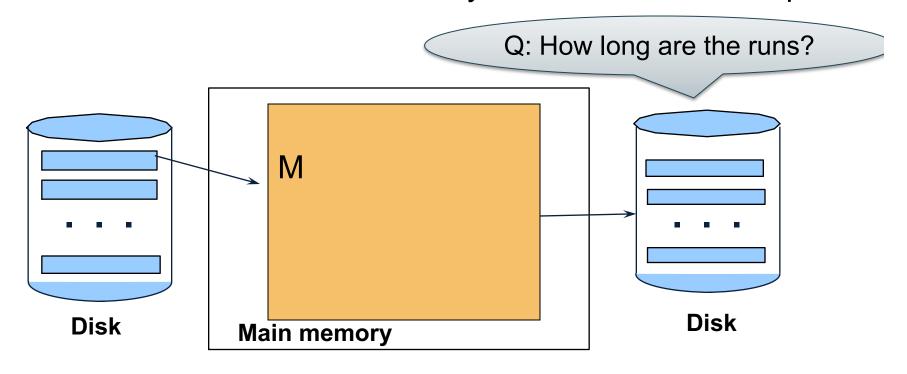
Basic Terminology

A run in a sequence is an increasing subsequence

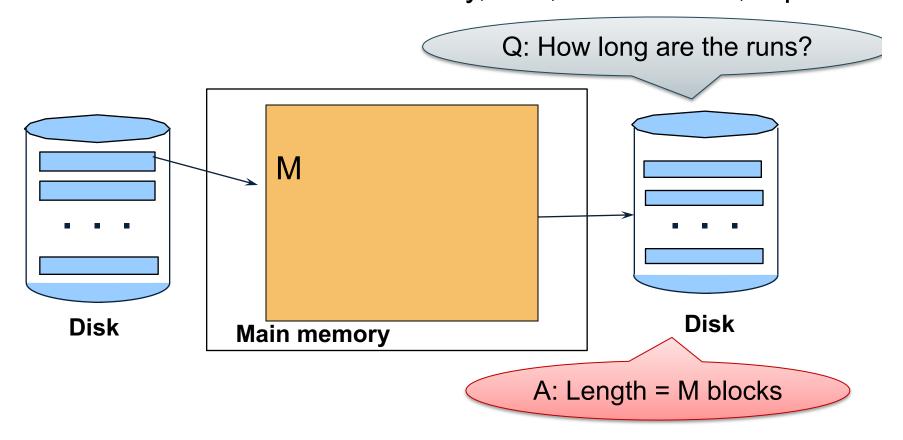
What are the runs?

Phase one: load M blocks in memory, sort, send to disk, repeat

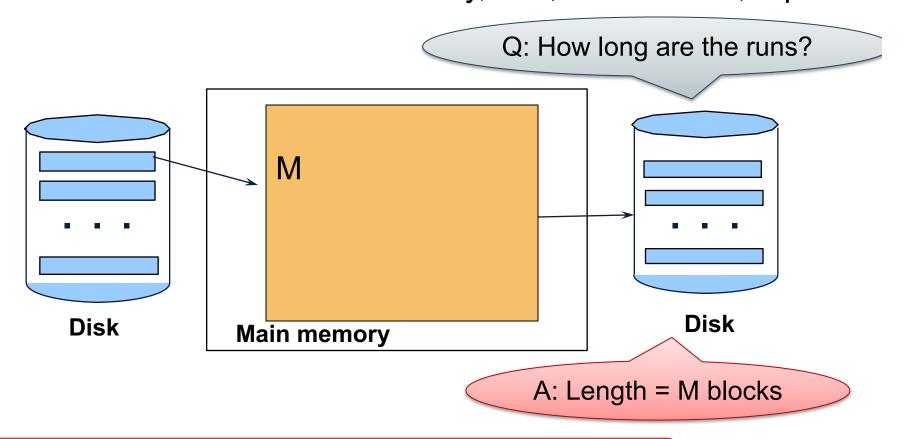
Phase one: load M blocks in memory, sort, send to disk, repeat



Phase one: load M blocks in memory, sort, send to disk, repeat



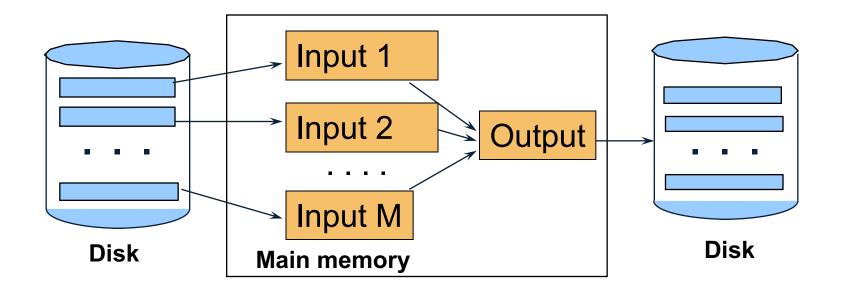
Phase one: load M blocks in memory, sort, send to disk, repeat



Sidenote: Can increase to length 2M using "replacement selection" (details in book)

Phase two: merge M runs into a bigger run

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) ≈ M²



Merging three runs to produce a longer run:

```
    14, 33, 88, 92, 192, 322
    4, 7, 43, 78, 103, 523
    6, 9, 12, 33, 52, 88, 320
```

Output:

0

Merging three runs to produce a longer run:

```
    14, 33, 88, 92, 192, 322
    4, 7, 43, 78, 103, 523
    6, 9, 12, 33, 52, 88, 320
```

Output:

0, ?

Merging three runs to produce a longer run:

```
0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
```

Output:

0, 1, ?

Merging three runs to produce a longer run:

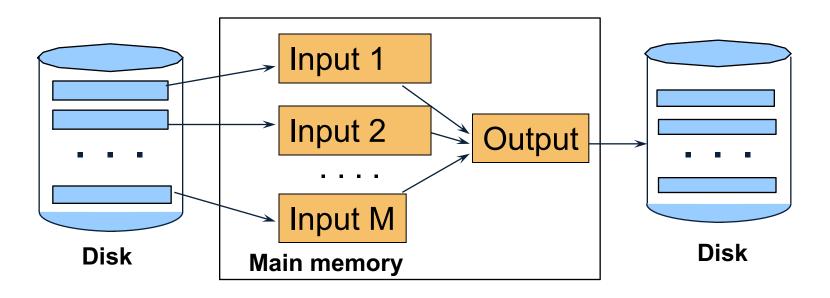
```
0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
```

Output:

0, 1, 2, 4, 6, 7, ?

Phase two: merge M runs into a bigger run

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) ≈ M²



If approx. $B \le M^2$ then we are done

Cost of External Merge Sort

• Assumption: B(R) <= M²

Read+write+read = 3B(R)

Discussion

- What does B(R) <= M² mean?
- How large can R be?

Discussion

- What does B(R) <= M² mean?
- How large can R be?
- Example:
 - Page size = 32KB
 - Memory size 32GB: $M = 10^6$ -pages

Discussion

- What does B(R) <= M² mean?
- How large can R be?
- Example:
 - Page size = 32KB
 - Memory size 32GB: $M = 10^6$ pages
- R can be as large as 10¹² pages
 - -32×10^{15} Bytes = 32 PB

Merge-Join

Join R ⋈ S

• How?....

Merge-Join

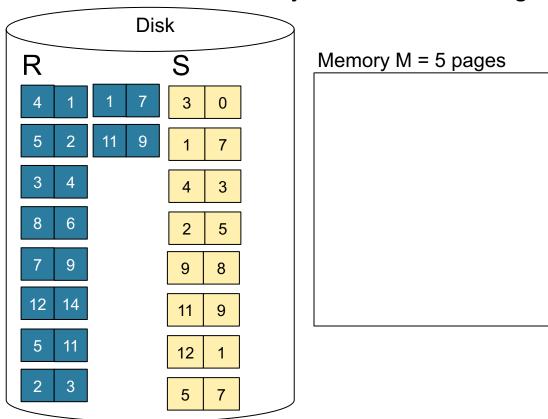
Join R ⋈ S

- Step 1a: generate initial runs for R
- Step 1b: generate initial runs for S
- Step 2: merge and join
 - Either merge first and then join
 - Or merge & join at the same time

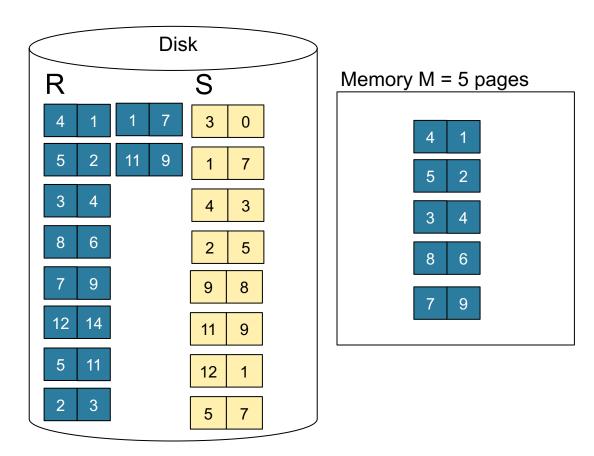
Setup: Want to join R and S

- Relation R has 10 pages with 2 tuples per page
- Relation S has 8 pages with 2 tuples per page

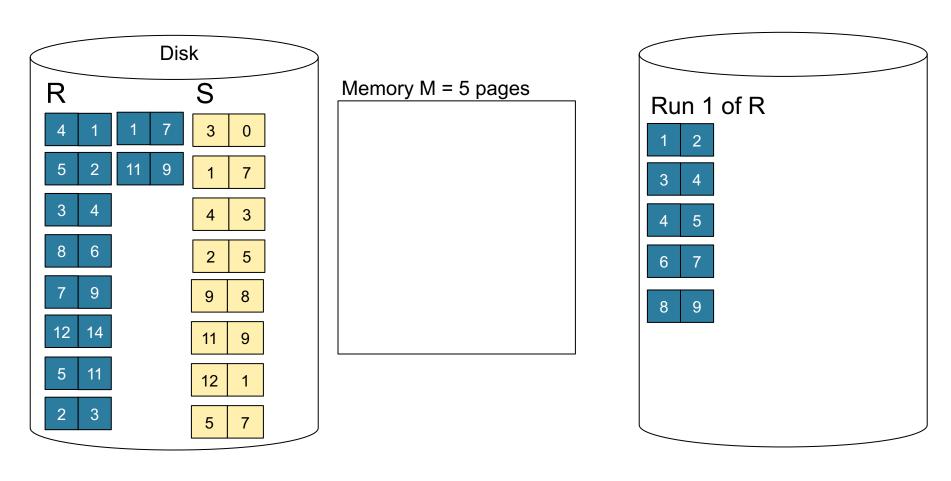
Values shown are values of join attribute for each given tuple



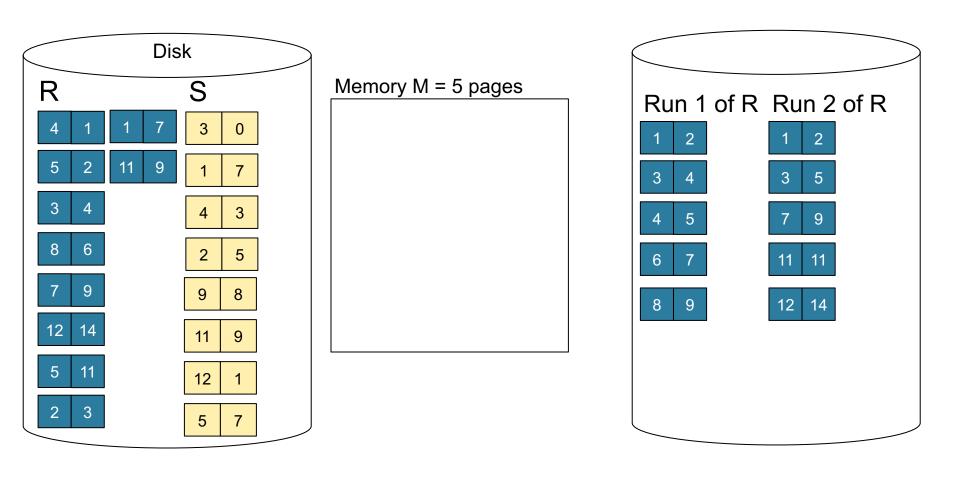
Step 1: Read M pages of R and sort in memory



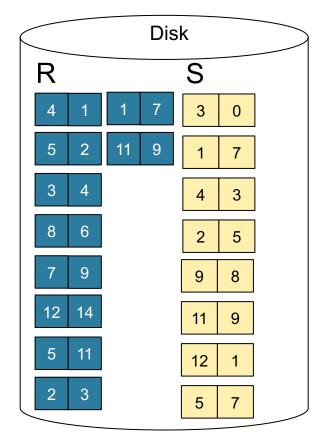
Step 1: Read M pages of R and sort in memory, then write to disk

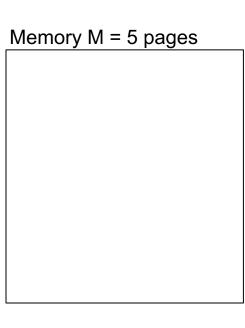


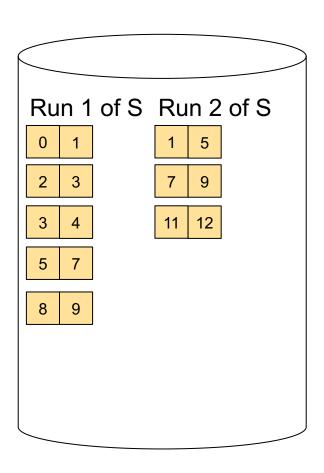
Step 1: Repeat for next M pages until all R is processed



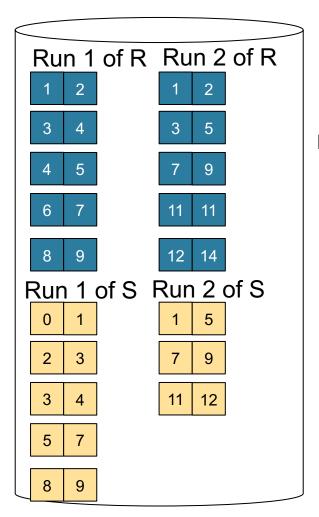
Step 1: Do the same with S



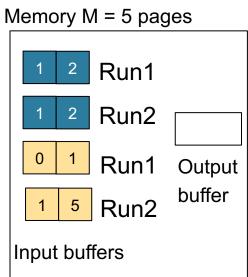




Step 2: Join while merging sorted runs

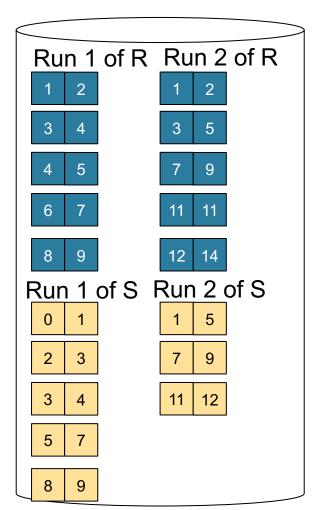


Total cost: 3B(R) + 3B(S)



Step 4: Join while merging Output tuples

Step 2: Join while merging sorted runs



Memory M = 5 pages

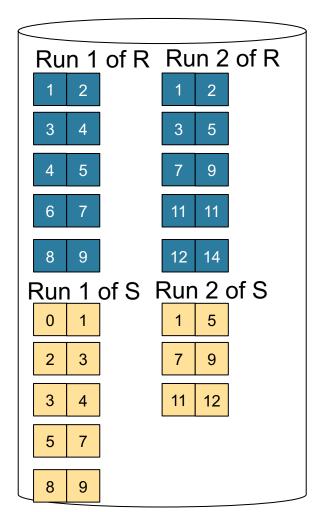
1 2 Run1
1 2 Run2
0 1 Run1 Output
1 5 Run2

Input buffers

Step 4: Join while merging
Output tuples
(1,1)
(1,1)
(1,1)
(1,1)

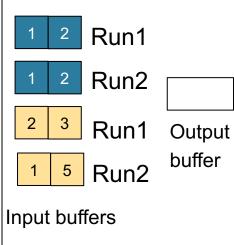
Total cost: 3B(R) + 3B(S)

Step 2: Join while merging sorted runs



Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

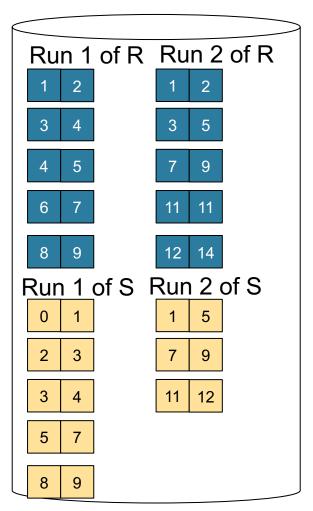


Step 4: Join while merging

Output tuples

- (1,1)
- (1,1)
- (1,1)
- (1,1)

Step 2: Join while merging sorted runs



Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

1 2 Run1

1 2 Run2

Run1 Output

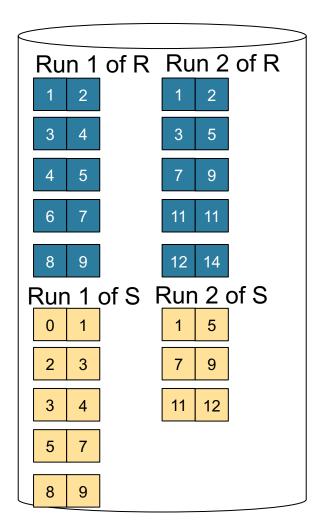
Street Run2 buffer

Input buffers

Step 4: Join while merging Output tuples

- (1,1)
- (1,1)
- (1,1)
- (1,1)
- (2,2)
- (2,2)

Step 2: Join while merging sorted runs



Total cost: 3B(R) + 3B(S)

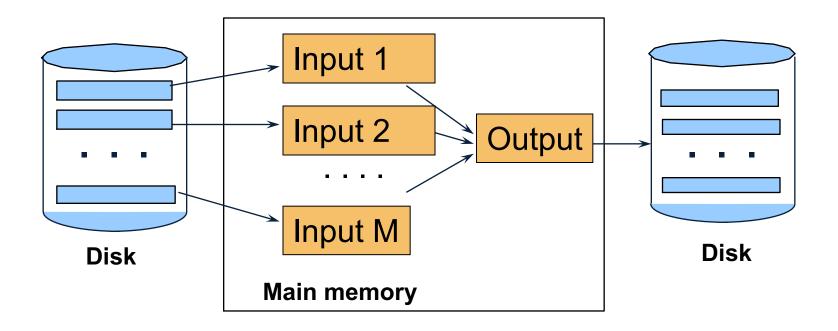
Memory M = 5 pages

3 4 Run1
3 5 Run2
2 3 Run1 Output
1 5 Run2
Input buffers

Step 4: Join while merging Output tuples

- (1,1)
- (1,1)
- (1,1)
- (1,1)
- (2,2)
- (2,2)
- (3,3)
- (3,3)
- ...

Merge-Join



 $M_1 = B(R)/M$ runs for R $M_2 = B(S)/M$ runs for S Merge-join $M_1 + M_2$ runs; need $M_1 + M_2 \le M$

Partition R it into k buckets:

$$R_1, R_2, R_3, ..., R_k$$

Partition R it into k buckets:

$$R_1, R_2, R_3, ..., R_k$$

• Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i

Partition R it into k buckets:

$$R_1, R_2, R_3, ..., R_k$$

- Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i
- Goal: each R_i should fit in main memory:
 B(R_i) ≤ M

Partition R it into k buckets:

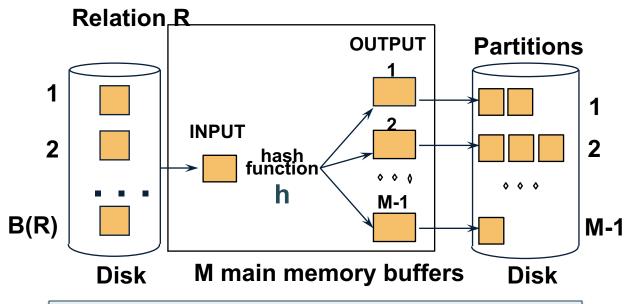
$$R_1, R_2, R_3, ..., R_k$$

- Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i
- Goal: each R_i should fit in main memory:

 $B(R_i) \leq M$

How do we choose k?

We choose k = M-1 Each bucket has size approx.
 B(R)/(M-1) ≈ B(R)/M



Assumption: $B(R)/M \le M$, i.e. $B(R) \le M^2$

Grace-Join

 $R \bowtie S$

Note: grace-join is also called partitioned hash-join

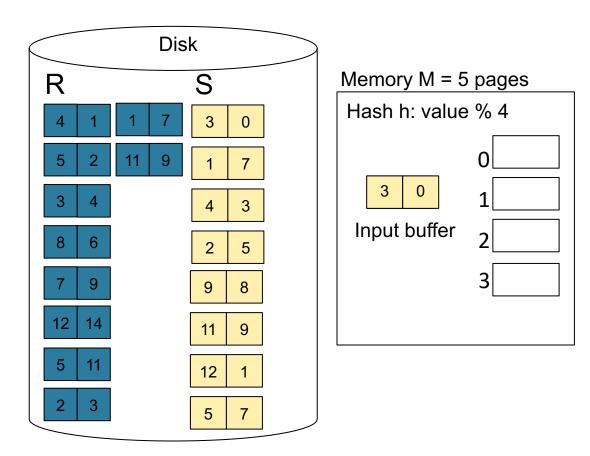
Grace-Join

$R \bowtie S$

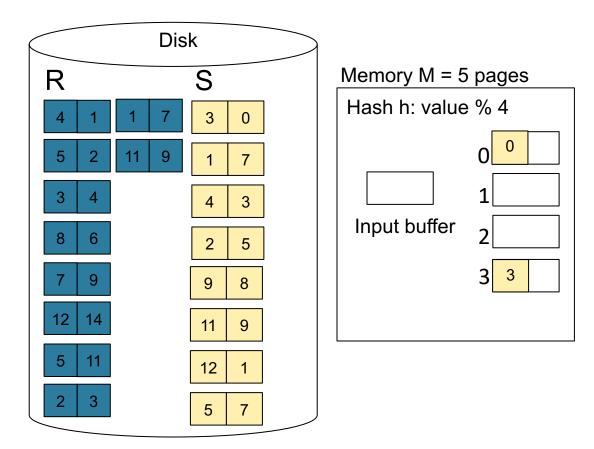
- Step 1:
 - Hash S into M buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Note: grace-join is also called partitioned hash-join

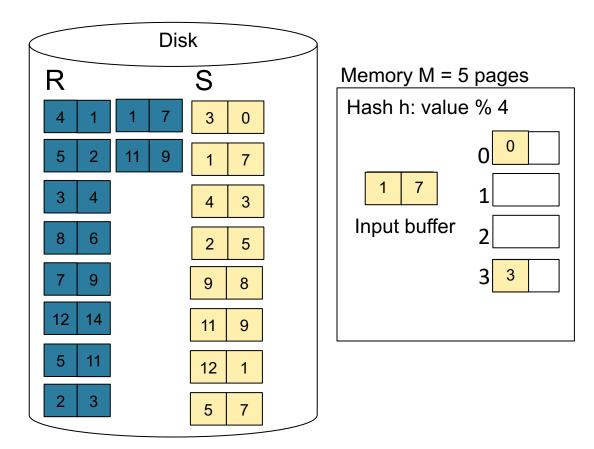
Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)



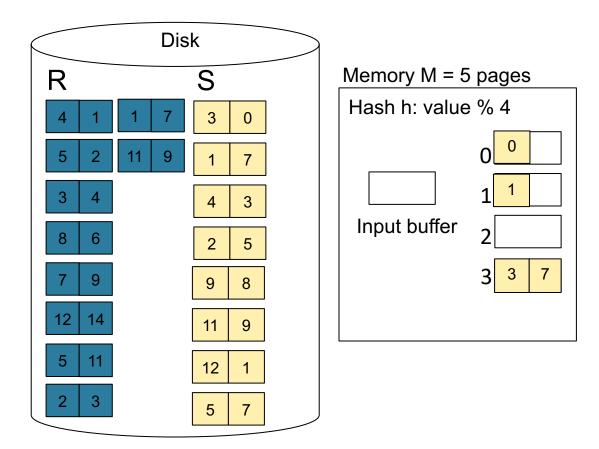
Step 1: Read relation S one page at a time and hash into the 4 buckets



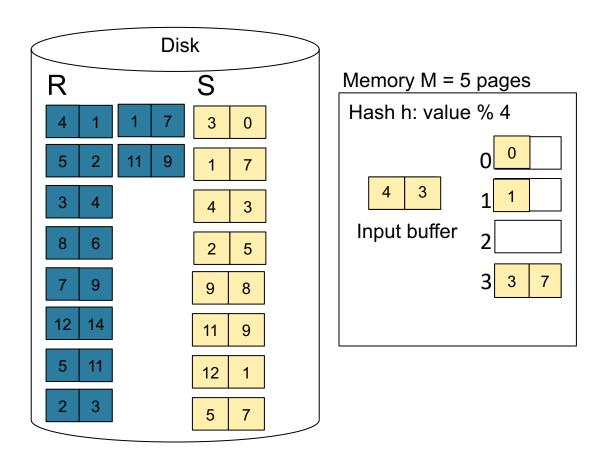
Step 1: Read relation S one page at a time and hash into the 4 buckets



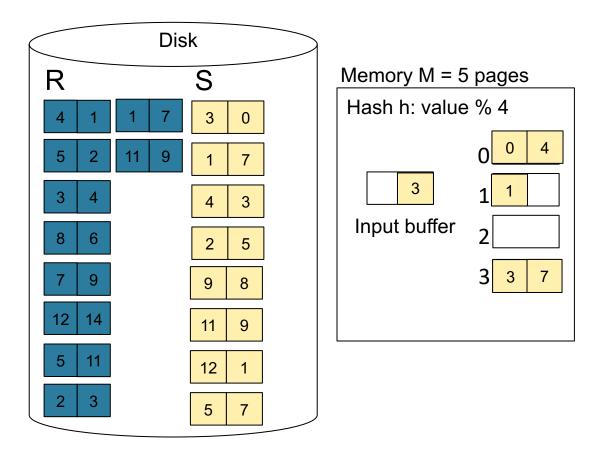
Step 1: Read relation S one page at a time and hash into the 4 buckets



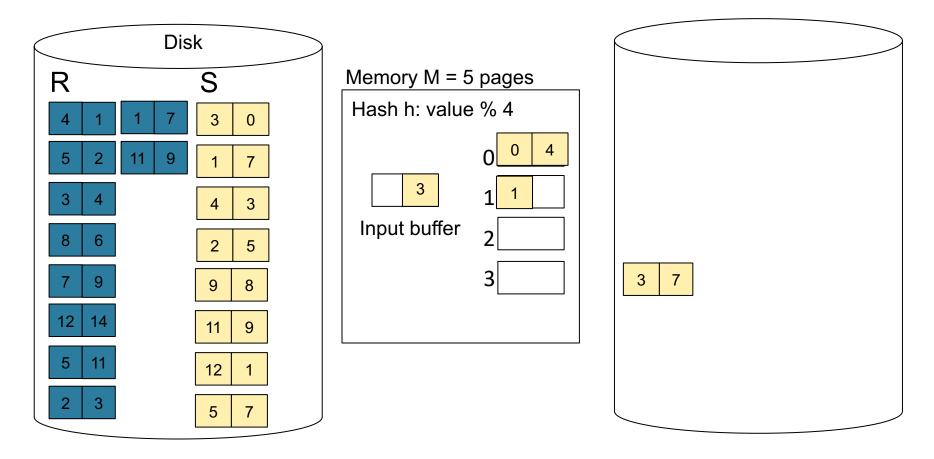
Step 1: Read relation S one page at a time and hash into the 4 buckets



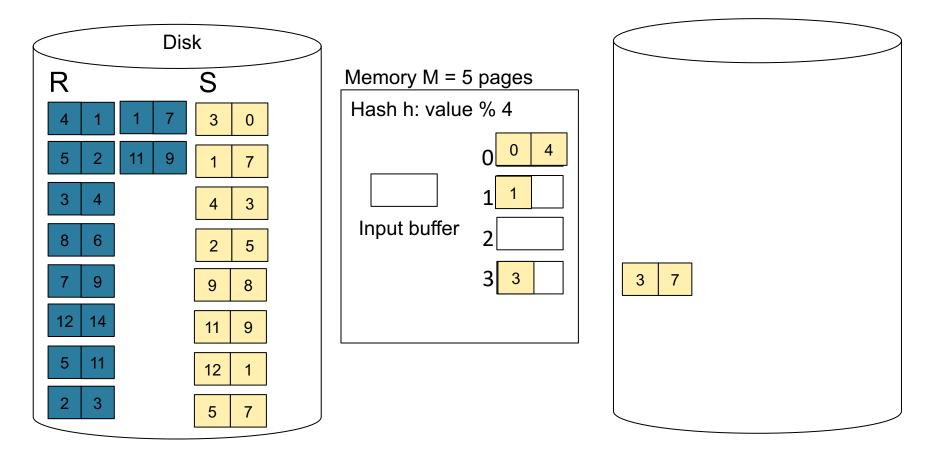
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



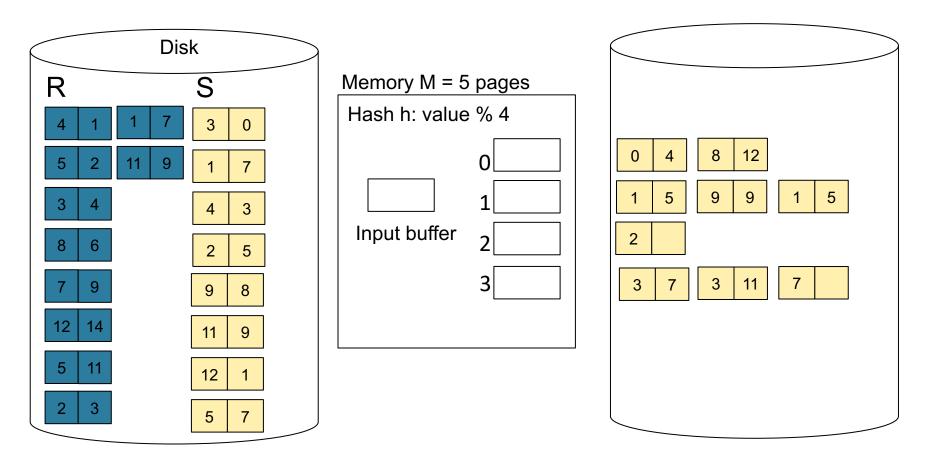
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



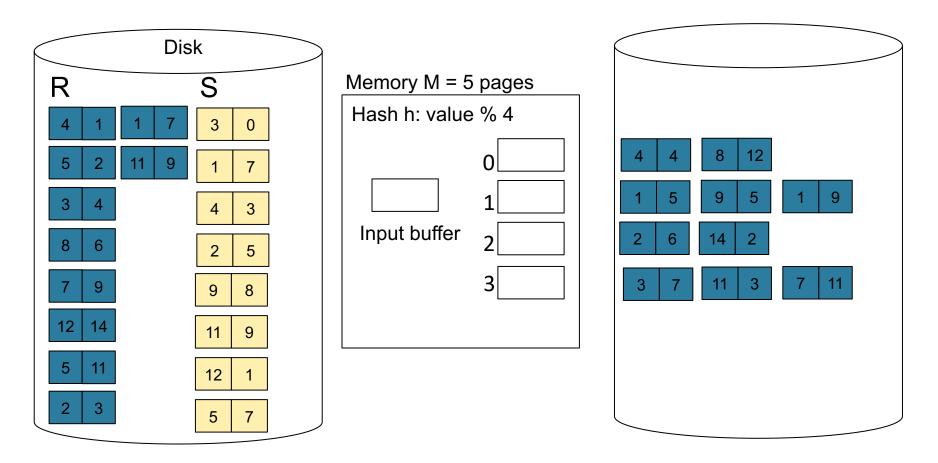
Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk



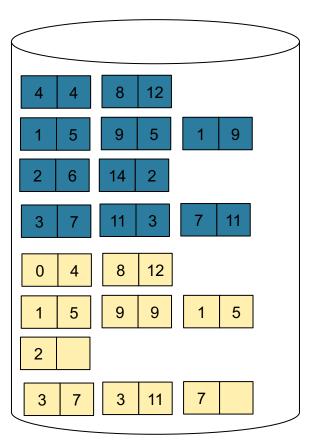
Step 1: Read relation S one page at a time and hash into the 4 buckets At the end, we get relation S back on disk split into 4 buckets

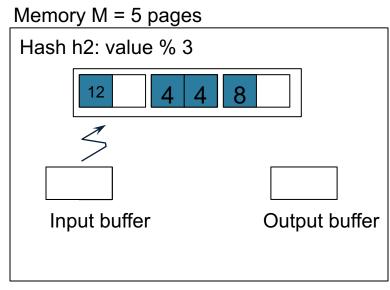


Step 2: Read relation R one page at a time and hash into same 4 buckets



Step 3: Read one partition of R and create hash table in memory using a different hash function

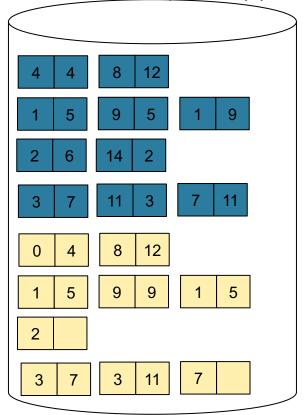


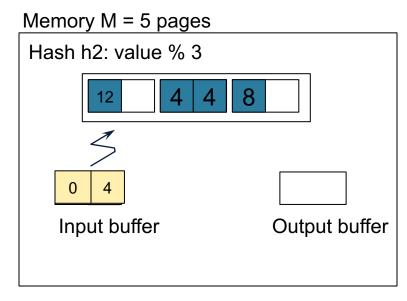


Step 4: Scan matching partition of S and probe the hash table

Step 5: Repeat for all the buckets

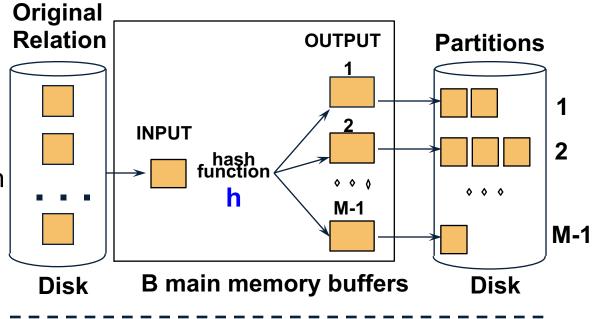
Total cost: 3B(R) + 3B(S)





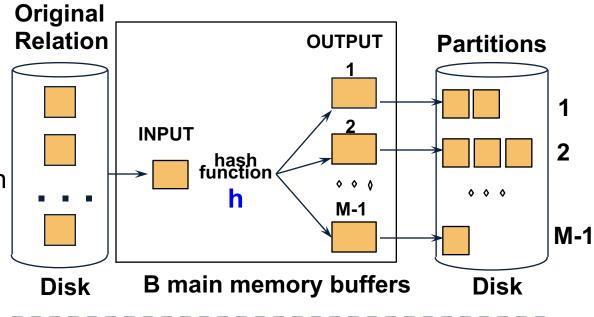
Grace-Join

Partition both relations
 using hash fn h: R tuples
 in partition i will only match
 S tuples in partition i.

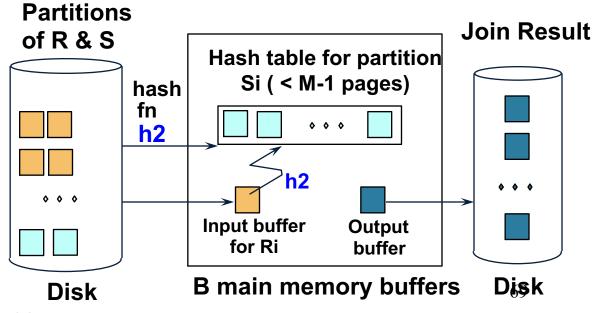


Grace-Join

Partition both relations
 using hash fn h: R tuples
 in partition i will only match
 S tuples in partition i.



Read in a partition
 of R, hash it using
 h2 (<> h!). Scan
 matching partition of
 S, search for
 matches.



CSE 444 - Winter 2019

Grace Join

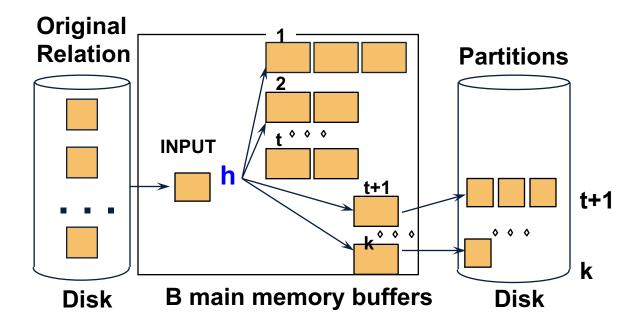
- Cost: 3B(R) + 3B(S)
- Assumption: min(B(R), B(S)) <= M²

Hybrid Hash Join Algorithm

- Partition S into k buckets
 t buckets S₁, ..., S_t stay in memory
 k-t buckets S_{t+1}, ..., S_k to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:

$$(R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), ..., (R_k, S_k)$$

Hybrid Hash Join Algorithm



How to choose k and t?

How to choose k and t?

Choose k large but s.t.

k <= M

- How to choose k and t?
 - Choose k large but s.t.

One block/bucket in memory

 $k \le M$

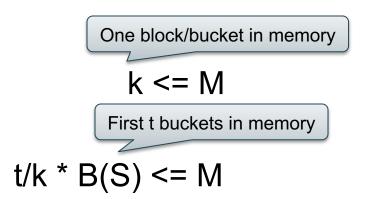
- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.

One block/bucket in memory

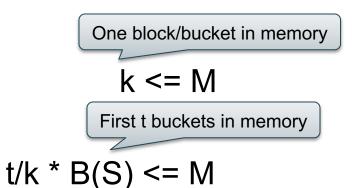
 $k \le M$

 $t/k * B(S) \le M$

- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.



- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.
 - Together:



$$t/k * B(S) + k-t \le M$$

- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.
 - Together:

$$t/k * B(S) + k-t \le M$$

• Assuming t/k * B(S) >> k-t: t/k = M/B(S)

First t buckets in memory

 $t/k * B(S) \le M$

- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.
 - Together:

$$t/k * B(S) \le M$$

$$t/k * B(S) + k-t \le M$$

• Assuming t/k * B(S) >> k-t: t/k = M/B(S)

- How to choose k and t?
 - Choose k large but s.t.
 - Choose t/k large but s.t.
 - Together:

$$t/k * B(S) \le M$$

$$t/k * B(S) + k-t \le M$$

Assuming t/k * B(S) >> k-t: t/k = M/B(S)

Total size of first t buckets

CSE 444 - Winter 2019

Number of remaining buckets

Even better: adjust t dynamically

- Start with t = k: all buckets are in main memory
- Read blocks from S, insert tuples into buckets
- When out of memory:
 - Send one bucket to disk
 - t := t-1
- Worst case:
 - All buckets are sent to disk (t=0)
 - Hybrid join becomes grace join

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
 - Saves 2 I/Os for t/k fraction of buckets
 - Saves 2t/k(B(R) + B(S)) I/Os
 - Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

What is the advantage of the hybrid algorithm?

What is the advantage of the hybrid algorithm?

It degrades gracefully when S larger than M:

- When B(S) <= M
 - Main memory hash-join has cost B(R) + B(S)
- When B(S) > M
 - Grace-join has cost 3B(R) + 3B(S)
 - Hybrid join has cost (3-2t/k)(B(R) + B(S))

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- Index Join: B(R) + T(R)B(S)/V(S,a) (unclustered)
- Partitioned Hash: 3B(R)+3B(S);
 - $\min(B(R),B(S)) \leq M^2$
- Merge Join: 3B(R)+3B(S)
 - $B(R) + B(S) \le M^2$

Summary of Query Execution

- For each logical query plan
 - There exist many physical query plans
 - Each plan has a different cost
 - Cost depends on the data
- Additionally, for each query
 - There exist several logical plans
- Next lecture: query optimization
 - How to compute the cost of a complete plan?
 - How to pick a good query plan for a query?