CSE 444: Database Internals

Lecture 8
Operator Algorithms (part 2)

Announcements

- Lab 2 released - new branch "lab2" contains instructions
- Lab 2 / part 1 due on Thursday
- We will not run any tests - So bugs are OK
- Homework 2 due on Friday
- Paper review for master's due on Friday

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

B+ Trees

CLUSTERED

UNCLUSTERED

Note: can also store data records directly as data entries

B+ Tree Example

$$
d=2
$$

Find the key 40

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on a:
- Unclustered index on a:

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: $\quad B(R) / V(R, a)$
- Unclustered index on $a: \quad T(R) / V(R, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: $\quad B(R) / V(R, a)$
- Unclustered index on $a: \quad T(R) / V(R, a)$

Note: we ignore I/O cost for index pages

Index Based Selection

- Example: | $B(R)=2000$ |
| :--- |
| $T(R)=100,000$ |
| $V(R, a)=20$ |

$$
\text { cost of } \sigma_{a=v}(\mathrm{R})=\text { ? }
$$

- Table scan:
- Index based selection:

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100,000 \\ V(R, a)=20\end{array}$ |
| :--- |\quad cost of $\sigma_{a=v}(R)=$?
- Table scan: $B(R)=2,000$ I/Os
- Index based selection:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered:
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$
- Table scan: $B(\mathrm{R})=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100$ I/Os
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100$ I/Os
- If index is unclustered: $T(R) / V(R, a)=5,000 I / O s$

Index Based Selection

- Example: $\begin{aligned} & \begin{array}{l}B(R)=2000 \\ T(R)=100,000 \\ V(R, a)=20\end{array} \\ & \text { - Table scan: } B(R)=2,000 \mathrm{I} / \mathrm{Os} \text { ! }\end{aligned}$.
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100$ I/Os
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$!

Index Based Selection

- Example:	$B(R)=2000$
$T(R)=100,000$	
$V(R, a)=20$	\quad cost of $\sigma_{a-v}(R)=$?
- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100$ I/Os
- If index is unclustered: $T(R) / V(R, a)=5,000$ I/Os

Lesson: Don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cost
$-B(R)+T(R) * B(S)$
- Index Nested Loop Join Cost:
- If index on S is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index on S is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

-What if data does not fit in memory?

- Need to process it in multiple passes
- Two key techniques
- Sorting
- Hashing

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,88,77,3,79,100,2,50$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,|88,|77,|3,79,100| 2,50$,

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

Sidenote: Can increase to length 2M using "replacement selection" (details in book)

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0 ,?

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0,1 ,?

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0, 1, 2, 4, 6, 7, ?

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

- Merge M-1 runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If approx. $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Assumption: $B(R)<=M^{2}$
- Read+write+read $=3 B(R)$

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: $M=10^{6}$-pages

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: $M=10^{6}$ pages
- R can be as large as 10^{12} pages
-32×10^{15} Bytes $=32 \mathrm{~PB}$

Merge-Join

Join $R \bowtie S$

- How?....

Merge-Join

Join $R \bowtie S$

- Step 1a: generate initial runs for R
- Step 1b: generate initial runs for S
- Step 2: merge and join
- Either merge first and then join
- Or merge \& join at the same time

Merge-Join Example

Setup: Want to join R and S

- Relation R has 10 pages with 2 tuples per page
- Relation S has 8 pages with 2 tuples per page

Values shown are values of join attribute for each given tuple

Merge-Join Example

Step 1: Read M pages of R and sort in memory

Merge-Join Example

Step 1: Read M pages of R and sort in memory, then write to disk

CSE 444 - Winter 2019

Merge-Join Example

Step 1: Repeat for next M pages until all R is processed

Merge-Join Example

Step 1: Do the same with S

CSE 444 - Winter 2019

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: $3 B(R)+3 B(S)$

Memory M = 5 pages

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: $3 B(R)+3 B(S)$

Memory M = 5 pages

Step 4: Join while merging
Output tuples

- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(1,1)$

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: $3 B(R)+3 B(S)$

Memory M = 5 pages

Step 4: Join while merging Output tuples

- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(1,1)$

Merge-Join Example

Step 2: Join while merging sorted runs

Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Memory M = 5 pages

Step 4: Join while merging
Output tuples

- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(2,2)$
- $(2,2)$

Merge-Join Example

Step 2: Join while merging sorted runs

Memory M = 5 pages

3	4	Run1	
3	5	Run2	
2	3	Run1	Output
1	5	Run2	buffer
Input buffers			

Total cost: $3 B(R)+3 B(S)$

Step 4: Join while merging
Output tuples

- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(1,1)$
- $(2,2)$
- $(2,2)$
- $(3,3)$
- $(3,3)$
- ...

Merge-Join

$M_{1}=B(R) / M$ runs for R
$M_{2}=B(S) / M$ runs for S
Merge-join $M_{1}+M_{2}$ runs;
need $M_{1}+M_{2}<=M$

Partitioned Hash Algorithms

- Partition R it into k buckets:
$R_{1}, R_{2}, R_{3}, \ldots, R_{k}$

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k, \quad$ for all i

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

Partitioned Hash Algorithms

- We choose $k=M-1$ Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

Assumption: $B(R) / M \leq M$, i.e. $B(R) \leq M^{2}$

Grace-Join

$R \bowtie S$
Note: grace-join is also called partitioned hash-join

Grace-Join

$R \bowtie S$

- Step 1:

- Send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into $M-1$ (=4 buckets)

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

Partitioned Hash-Join Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
At the end, we get relation S back on disk split into 4 buckets

Partitioned Hash-Join Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

CSE 444 - Winter 2019

Partitioned Hash-Join Example

Step 3: Read one partition of R and create hash table in memory using a different hash functior

Partitioned Hash-Join Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i .

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i .
* Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Grace Join

- Cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets
t buckets S_{1}, \ldots, S_{t} stay in memory
k-t buckets S_{t+1}, \ldots, S_{k} to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

Hybrid Join Algorithm

- How to choose k and t?

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
$\mathrm{k}<=\mathrm{M}$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

One block/bucket in memory
$\mathrm{k}<=\mathrm{M}$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.

One block/bucket in memory
$\mathrm{k}<=\mathrm{M}$
t / k * $B(S)<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

One block/bucket in memory
k <= M
First t buckets in memory

- Choose t/k large but s.t.
t/k * $B(S)<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
$\mathrm{k}<=\mathrm{M}$
First t buckets in memory
- Choose t/k large but s.t.
t/k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
$\mathrm{k}<=\mathrm{M}$
First t buckets in memory
- Choose t/k large but s.t.
t / k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$
- Assuming t / k * $\mathrm{B}(\mathrm{S}) \gg \mathrm{k}-\mathrm{t}: \mathrm{t} / \mathrm{k}=\mathrm{M} / \mathrm{B}(\mathrm{S})$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
$\mathrm{k}<=\mathrm{M}$
First t buckets in memory
- Choose t/k large but s.t.
t / k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$
- Assuming t/k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
k <= M
First t buckets in memory
- Choose t/k large but s.t.
$\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S})<=\mathrm{M}$
- Together:
t / k * $B(S)+k-t<=M$
- Assuming t/k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

Even better: adjust t dynamically

- Start with $\mathrm{t}=\mathrm{k}$: all buckets are in main memory
- Read blocks from S, insert tuples into buckets
- When out of memory:
- Send one bucket to disk
- t := t-1
- Worst case:
- All buckets are sent to disk ($\mathrm{t}=0$)
- Hybrid join becomes grace join

Hybrid Join Algorithm

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
- Saves 2 l/Os for t/k fraction of buckets
- Saves 2t/k(B(R) + B(S)) I/Os
- Cost: $(3-2 t / k)(B(R)+B(S))=(3-2 M / B(S))(B(R)+B(S))$

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm?

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm?

It degrades gracefully when S larger than M :

- When $\mathrm{B}(\mathrm{S})$ <= M
- Main memory hash-join has cost $B(R)+B(S)$
- When $B(S)>M$
- Grace-join has cost $3 B(R)+3 B(S)$
- Hybrid join has cost (3-2t/k)(B(R) + B(S))

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- Index Join: B(R) + T(R)B(S)/V(S,a) (unclustered)
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: 3B(R)+3B(S)
$-B(R)+B(S)<=M^{2}$

Summary of Query Execution

- For each logical query plan
- There exist many physical query plans
- Each plan has a different cost
- Cost depends on the data
- Additionally, for each query
- There exist several logical plans
- Next lecture: query optimization
- How to compute the cost of a complete plan?
- How to pick a good query plan for a query?

