
1

CSE 444: Database Internals

Lecture 3
DBMS Architecture

1CSE 444 – Winter 2018

Announcements
• Should be well on your way to finishing part 1
• Tuple, TupleDesc,
• Quiz 1 and 2 merge, 3 and 4 merge. Same work
• Lab 1 part 1 due tonight at 11pm

– Turn in using script in local repo: ./turnInLab.sh lab1-part1
– Remember to confirm that the tag has been applied in GitLab!

• HW1 is due on Friday at 11pm

– Turn in by uploading to GitLab (will post instructions online) or
submit a paper copy in class or office hours on the due date.

– Helps you think about Lab 1 before implementing it… but don’t
wait until Wednesday to continue on Lab 1!!!

• 544M first reading assignment due on Friday

• Lab 1 is due next Wednesday (1/17) at 11pm

– A lot more work than part 1!

CSE 444 – Winter 2018 3

Late Days

• 4 late days total – At most 2 per lab or homework
• Can use in 24 hour chunks at any time
• NO OTHER EXTENSIONS!

• Try to save late days for later in the quarter

• But no late days for final lab

CSE 444 – Winter 2018 4

What we already know…

• Database = collection of related files

• DBMS = program that manages the database

CSE 444 – Winter 2018 5

What we already know…

• Data models: relational, semi-structured
(XML), graph (RDF), key-value pairs

• Relational model: defines only the logical
model, and does not define a physical
storage of the data

CSE 444 – Winter 2018 6

What we already know…

Relational Query Language:

• Set-at-a-time: instead of tuple-at-a-time

• Declarative: user says what they want and
not how to get it

• Query optimizer: from what to how

CSE 444 – Winter 2018 7

2

How to Implement a
Relational DBMS?

CSE 444 – Winter 2018 8

DBMS
SQL

Data

DBMS Architecture

9CSE 444 – Winter 2018

DBMS Architecture

10

Query Processor

Parser

Query Rewrite

Optimizer

Executor

CSE 444 – Winter 2018

DBMS Architecture

11

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

DBMS Architecture

12

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

DBMS Architecture

13

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Red Book. 4ed.]

3

Goal for Today

Overview of query execution

Overview of storage manager

CSE 444 – Winter 2018 14

Query Processor

CSE 444 – Winter 2018 15

Example Database Schema

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS
SELECT sno, sname

FROM Supplier
WHERE scity='Seattle' AND sstate='WA' 16 CSE 444 – Winter 2018

Example Query

• Find the names of all suppliers in Seattle who
supply part number 2

SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supplies

WHERE pno = 2)

17

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

CSE 444 – Winter 2018

Query Processor
• Step 1: Parser

– Parses query into an internal format
– Performs various checks using catalog

• Step 2: Query rewrite
– View rewriting, flattening, etc.

18 CSE 444 – Winter 2018

Rewritten Version of Our Query
Original query:
SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supplies
WHERE pno = 2)

Rewritten query (expanding NearbySupp view):
SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2;

19

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

4

Query Processor

• Step 3: Optimizer
– Find an efficient query plan for executing the query
– A query plan is

• Logical: An extended relational algebra tree
• Physical: With additional annotations at each node

– Access method to use for each relation
– Implementation to use for each relational operator

• Step 4: Executor
– Actually executes the physical plan

CSE 444 – Winter 2018 20 CSE 444 – Winter 2018

Logical Query Plan

Supplier Supplies

sno = sno

!sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

21

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

SELECT S.sname
FROM Supplier S, Supplies U
WHERE
S.scity='Seattle'
AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2;

CSE 444 – Winter 2018

Physical Query Plan

• Logical query plan with extra annotations

• Access path selection for each relation
– Use a file scan or use an index

• Implementation choice for each operator

• Scheduling decisions for operators
22 CSE 444 – Winter 2018

Physical Query Plan

Suppliers Supplies

sno = sno

! sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

23

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

Query Executor

CSE 444 – Winter 2018 24

Iterator Interface
• Each operator implements this interface
• open()

– Initializes operator state
– Sets parameters such as selection predicate

• next()
– Operator invokes next() recursively on its inputs
– Performs processing and produces an output tuple

• close(): clean-up state
• Operators also have reference to their child

operator in the query plan
25

5

CSE 444 – Winter 2018

Query Execution

Suppliers Supplies

sno = sno

! sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

26

open()

open()

open()

open() open()

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

CSE 444 – Winter 2018

Query Execution

Suppliers Supplies

sno = sno

! sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

27

next()

next()

next()

next() next()

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supplies(sno,pno,price)

next()

Storage Manager

CSE 444 – Winter 2018 28

Access Methods

Query Processor

Storage Manager

Access Methods: HeapFile, etc.

Buffer Manager

29

Operators: Sequential Scan, etc.

Data on disk

• Operators: Process data
• Access methods:

Organize data to support
fast access to desired
subsets of records

• Buffer manager: Caches
data in memory.
Reads/writes data to/from
disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Disk Space Mgr

Buffer Manager

30

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Buffer pool manager
Access methods

Buffer Manager

• Brings pages in from memory and caches them
• Eviction policies

– Random page (ok for SimpleDB)
– Least-recently used
– The “clock” algorithm (see book)

• Keeps track of which pages are dirty
– A dirty page has changes not reflected on disk
– Implementation: Each page includes a dirty bit

CSE 444 – Winter 2018 31

6

Access Methods

• A DBMS stores data on disk by breaking it into pages
– A page is the size of a disk block.
– A page is the unit of disk IO

• Buffer manager caches these pages in memory
• Access methods do the following:

– They organize pages into collections called DB files
– They organize data inside pages
– They provide an API for operators to access data in these files

• Discussion:
– OS vs DBMS files
– OS vs DBMS buffer manager

CSE 444 – Winter 2018 32 CSE 444 – Winter 2018

Query Execution
How it all Fits Together

Suppliers Supplies

sno = sno

!sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

33

open()

open()

open()

open() open()

CSE 444 – Winter 2018

Suppliers Supplies

sno = sno

! sscity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

#sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

34

next()

next()

next()

next() next()

Query Execution
How it all Fits Together

next()

CSE 444 – Winter 2018 35

Query Execution In SimpleDB

SeqScan Operator at
bottom of plan

Heap File Access Method

In SimpleDB, SeqScan can
find HeapFile in Catalog

open()

open()

Offers iterator interface
• open()
• next()
• close()
Knows how to read/write pages from disk

next()

next()

But if Heap File reads data
directly from disk, it will not
stay cached in Buffer Pool!

HeapFile

Buffer
Pool

Manager

36
Data on disk: OS Files

Iterator interface
• open()
• next()
• close()
Read/write pages from disk

Query Execution In SimpleDB

Everyone shares
a single cache

HeapFile2

HeapFile3

HeapFileN

Heap files for
other relations

getPage()

readPage()

CSE 444 – Winter 2018

HeapFile In SimpleDB
• Data is stored on disk in an OS file. HeapFile

class knows how to “decode” its content
• Control flow:

37CSE 444 – Winter 2018

•The BufferManager will then call HeapFile
.readPage()/writePage() page to actually read/write the
page.

• SeqScan calls methods such as "iterate" on the HeapFile
Access Method

• During the iteration, the HeapFile object needs to call the
BufferManager.getPage() method to ensure that necessary
pages get loaded into memory.

