CSE 444: Database Internals

Lecture 2 Review of the Relational Model

Announcements

- Lab 1 part 1 is due on Monday
 - Lab 1 is due on Jan 23rd
 - "git commit –a" and "git push" often!
- HW1 is due next week on Friday
 - Print out PDF and hand in completed version
- 544M first paper review is also due next week
 - Deadlines are flexible for graduate readings

Agenda

- Review Relational Model
- Review Queries (will skip some slides)
 - Relational Algebra
 - SQL
- Review translation SQL \rightarrow RA
 - Needed for HW1

Database/Relation/Tuple

- A Database is collection of relations
- A Relation R is subset of $S_1 x S_2 x \dots x S_n$
 - Where $\mathbf{S}_{\mathbf{i}}$ is the domain of attribute \mathbf{i}
 - n is number of attributes of the relation
 - A relation is a set of tuples
- A Tuple t is an element of $S_1 \times S_2 \times \dots \times S_n$

Other names: relation = table; tuple = row

Discussion

• Rows in a relation:

Data independence!

- Ordering immaterial (a relation is a set)
- All rows are distinct set semantics
- Query answers may have duplicates bag semantics
- Columns in a tuple:
 - Ordering is significant
 - Applications refer to columns by their names
- Domain of each column is a primitive type

Schema

- Relation schema: describes column heads
 - Relation name
 - Name of each field (or column, or attribute)
 - Domain of each field
- Degree (or arity) of relation: # attributes
- Database schema: set of all relation schemas

Instance

- Relation instance: concrete table content
 - Set of tuples (also called records) matching the schema
- Cardinality of relation instance: # tuples
- Database instance: set of all relation instances

What is the schema? What is the instance?

Supplier

sno	sname	scity	sstate
1	s1	city 1	WA
2	s2	city 1	WA
3	s3	city 2	MA
4	s4	city 2	MA

What is the schema? What is the instance?

Relation schema

Supplier(<u>sno: integer</u>, sname: string, scity: string, sstate: string)

Supplier

sno	sname	scity	sstate		
1	s1	city 1	WA		
2	s2	city 1	WA		5
3	s3	city 2	MA		ns
4	s4	city 2	MA	J	

Integrity Constraints

- Condition specified on a database schema
- Restricts data that can be stored in db instance
- DBMS enforces integrity constraints
 - Ensures only legal database instances exist
- Simplest form of constraint is domain constraint
 - Attribute values must come from attribute domain

Key Constraints

- **Super Key:** "set of attributes that functionally determines all attributes"
- Key: Minimal super-key; a.k.a. "candidate key"
- Primary key: One minimal key can be selected as primary key

Foreign Key Constraints

• A relation can refer to a tuple in another relation

• Foreign key

- Field that refers to tuples in another relation
- Typically, this field refers to the primary key of other relation
- Can pick another field as well

CREATE TABLE Part (pno integer, pname varchar(20), psize integer, pcolor varchar(20), PRIMARY KEY (pno));

```
CREATE TABLE Supply(
   sno integer,
   pno integer,
   qty integer,
   price integer
);
```

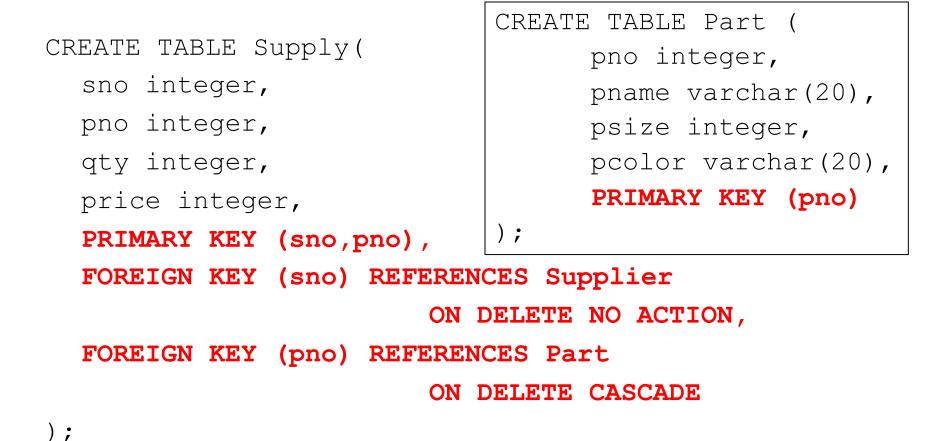
CREATE TABLE Part (
 pno integer,
 pname varchar(20),
 psize integer,
 pcolor varchar(20),
 PRIMARY KEY (pno)
);

```
CREATE TABLE Supply(
```

```
sno integer,
```

pno integer,

qty integer,


);

price integer,

PRIMARY KEY (sno, pno)

CREATE TABLE Part (
 pno integer,
 pname varchar(20),
 psize integer,
 pcolor varchar(20),
 PRIMARY KEY (pno)
);

```
CREATE TABLE Part (
CREATE TABLE Supply (
                                    pno integer,
  sno integer,
                                    pname varchar(20),
  pno integer,
                                    psize integer,
  qty integer,
                                    pcolor varchar(20),
                                    PRIMARY KEY (pno)
  price integer,
                             );
  PRIMARY KEY (sno, pno),
  FOREIGN KEY (sno) REFERENCES Supplier,
  FOREIGN KEY (pno) REFERENCES Part
);
```


General Constraints

Table constraints serve to express complex constraints over a single table

```
CREATE TABLE Part (

pno integer,

pname varchar(20),

psize integer,

pcolor varchar(20),

PRIMARY KEY (pno),

CHECK ( psize > 0 )
```

);

Note: Also possible to create constraints over many tables Best to use database triggers for that purpose

Relational Query Languages

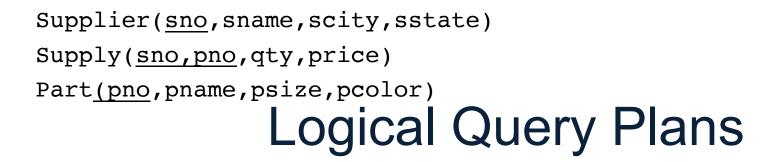
Relational Query Language

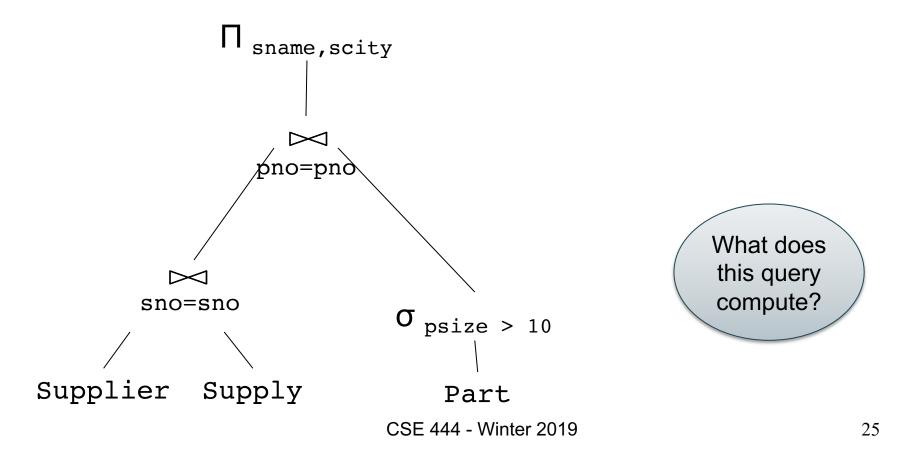
- Set-at-a-time:
 - Query inputs and outputs are relations
- Two variants of the query language:
 - Relational algebra: specifies order of operations
 - Relational calculus / SQL: declarative

Note

- We will go very quickly in class over the Relational Algebra and SQL
- Please review at home:
 - Read the slides that we skipped in class
 - Review material from 344 as needed

Relational Algebra


- Queries specified in an operational manner
 - A query gives a step-by-step procedure
- Relational operators
 - Take one or two relation instances as argument
 - Return one relation instance as result
 - Easy to compose into relational algebra expressions


Five Basic Relational Operators

- Selection: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (∧,∨)
 of atomic predicates (<, <=, =, ≠, >=, >)
- Projection: $\pi_{\text{list-of-attributes}}(S)$
- Union (U)
- Set difference (-),
- Cross-product/cartesian product (×), Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

Other operators: anti-semijoin, renaming

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
Logical Query Plans

Selection & Projection Examples

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

 $\pi_{zip,disease}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

$$\pi_{zip} \left(\sigma_{disease='heart'}(Patient) \right)$$

zip
98120
98125

 $\sigma_{\text{disease='heart'}}$ (Patient)

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

Cross-Product Example

AnonPatient P

Voters	V

age	zip	disease
54	98125	heart
20	98120	flu

name	age	zip
p1	54	98125
p2	20	98120

 $P \times V$

P.age	P.zip	disease	name	V.age	V.zip
54	98125	heart	p1	54	98125
54	98125	heart	p2	20	98120
20	98120	flu	p1	54	98125
20	98120	flu	p2	20	98120

Different Types of Join

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection $\boldsymbol{\theta}$
- Equijoin: $\mathbb{R}_{\bowtie \theta} S = \pi_A(\sigma_{\theta}(\mathbb{R} \times S))$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R_{\bowtie} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on **all** fields with same name in R and in S

Theta-Join Example

AnonPatient P

age	zip	disease
50	98125	heart
19	98120	flu

name	age	zip
p1	54	98125
p2	20	98120

$$P \bowtie_{P.zip} = V.zip$$
 and P.age <= V.age + 1 and P.age >= V.age - 1 V

P.age	P.zip	disease	name	V.age	V.zip
19	98120	flu	p2	20	98120

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

 $\mathsf{P} \bowtie_{\mathsf{P.age=V.age}} \mathsf{V}$

age	P.zip	disease	name	V.zip
54	98125	heart	p1	98125
20	98120	flu	p2	98120

Natural Join Example

AnonPatient P

Vo	ters	V
		-

age	zip	disease
54	98125	heart
20	98120	flu

nameagezipp15498125p22098120

 $\mathsf{P}\bowtie\mathsf{V}$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

P _X V

Voters V

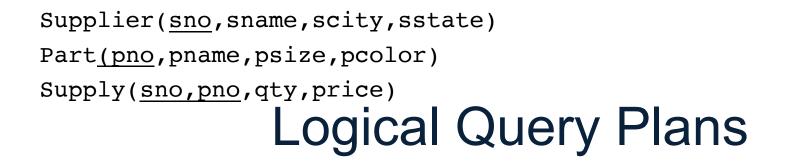
name	age	zip
p1	54	98125
p2	20	98120

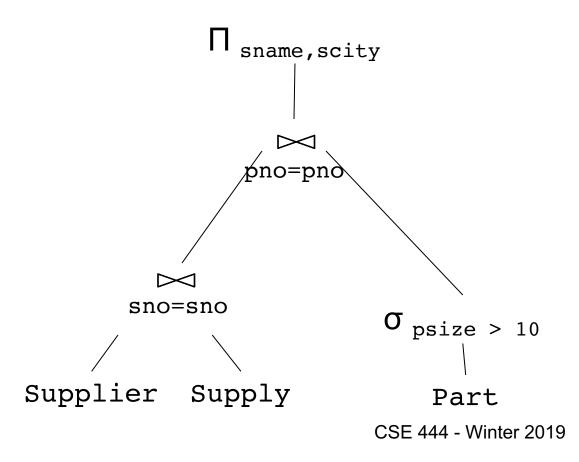
age	zip	disease	name
54	98125	heart	р1
20	98120	flu	p2
33	98120	lung	null

Example of Algebra Queries

Q1: Names of patients who have heart disease π_{name} (Voter \bowtie ($\sigma_{disease='heart'}$ (AnonPatient))

More Examples


Relations


Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \Join \text{Supply} \Join (\sigma_{\text{psize}>10} \text{ (Part)}))$

Q3: Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \Join \text{Supply} \Join (\sigma_{\text{psize}>10} (\text{Part}) \cup \sigma_{\text{pcolor='red'}} (\text{Part})))$

(Many more examples in the book)

Extended Operators of Relational Algebra

- Duplicate elimination (δ)
 - Since commercial DBMSs operate on multisets not sets
- Aggregate operators (γ)
 - Min, max, sum, average, count
- Grouping operators (y)
 - Partitions tuples of a relation into "groups"
 - Aggregates can then be applied to groups
- Sort operator (τ)

Structured Query Language: SQL

- Declarative query language, based on the relational calculus (see 344)
- Data definition language
 - Statements to create, modify tables and views
- Data manipulation language
 - Statements to issue queries, insert, delete data

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT<attributes>FROM<one or more relations>WHERE<conditions>

Supplier(<u>sno</u>, sname, scity, sstate)
Supply(<u>sno</u>, pno, qty, price)
Part(pno, pname, psize, pcolor)
Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
Quick Review of SQL

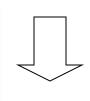
SELECT DISTINCT z.pno, z.pname FROM Supplier x, Supply y, Part z WHERE x.sno = y.sno and y.pno = z.pno and x.scity = 'Seattle' and y.price < 100

> What does this query compute?

Supplier(<u>sno</u>, sname, scity, sstate)
Supply(<u>sno,pno</u>, qty, price)
Part(<u>pno</u>, pname, psize, pcolor)
Quick Review of SQL

What about this one?

SELECT z.pname, count(*) as cnt, min(y.price) FROM Supplier x, Supply y, Part z WHERE x.sno = y.sno and y.pno = z.pno GROUP BY z.pname

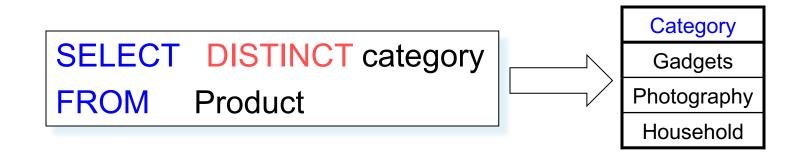

Simple SQL Query

Product	PName	Price	Category	Manufacturer
	Gizmo	\$19.99	Gadgets	GizmoWorks
	Powergizmo	\$29.99	Gadgets	GizmoWorks
	SingleTouch	\$149.99	Photography	Canon
	MultiTouch	\$203.99	Household	Hitachi
SELECT *FROMProductWHEREcategory=				
	PName	Price	Category	Manufacturer
	Gizmo	\$19.99	Gadgets	GizmoWorks
"	Powergizmo	\$29.99	Gadgets	GizmoWorks
("selection")	CSE 444 - Winter 2019		43	

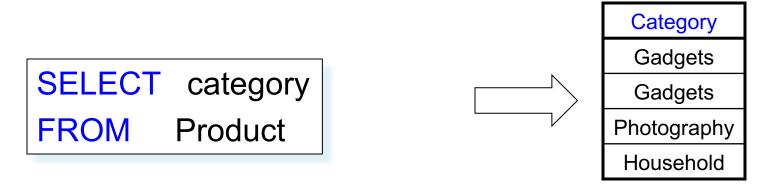
Simple SQL Query

Product	PName	Price	Category	Manufacturer
	Gizmo	\$19.99	Gadgets	GizmoWorks
	Powergizmo	\$29.99	Gadgets	GizmoWorks
	SingleTouch	\$149.99	Photography	Canon
	MultiTouch	\$203.99	Household	Hitachi

SELECTPName, Price, ManufacturerFROMProductWHEREPrice > 100


"selection" and
"projection"PNamePriceManufacturerSingleTouch\$149.99CanonMultiTouch\$203.99Hitachi

CSE 444 - Winter 2019


Details

- Case insensitive:
 - Same: SELECT Select select
 - Same: Product product
 - Different: 'Seattle' 'seattle'
- Constants:
 - 'abc' yes
 - "abc" no

Eliminating Duplicates

Compare to:

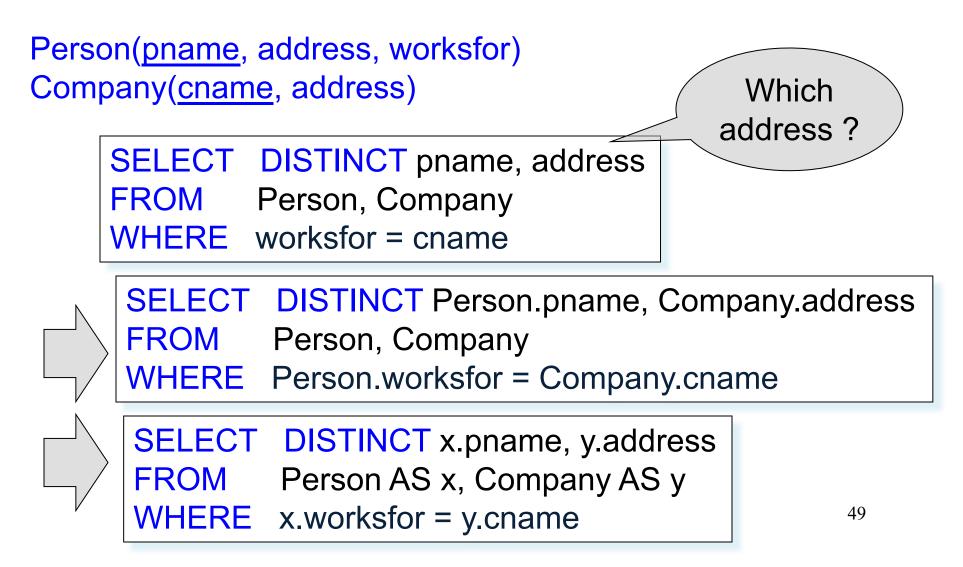
CSE 444 - Winter 2019

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category='gizmo' AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.


Joins

Product (<u>pname</u>, price, category, manufacturer) Company (<u>cname</u>, stockPrice, country)

Find all products under \$200 manufactured in Japan; return their names and prices.

SELECT	PName, Price
FROM	Product, Company
WHERE	Manufacturer=CName AND Country='Japan'
	AND Price <= 200

Tuple Variables

Nested Queries

- Nested query
 - Query that has another query embedded within it
 - The embedded query is called a subquery
- Why do we need them?
 - Enables to refer to a table that must itself be computed
- Subqueries can appear in
 - WHERE clause (common)
 - FROM clause (less common)
 - HAVING clause (less common)

Subqueries Returning Relations

Company(name, city) Product(pname, maker) Purchase(id, product, buyer)

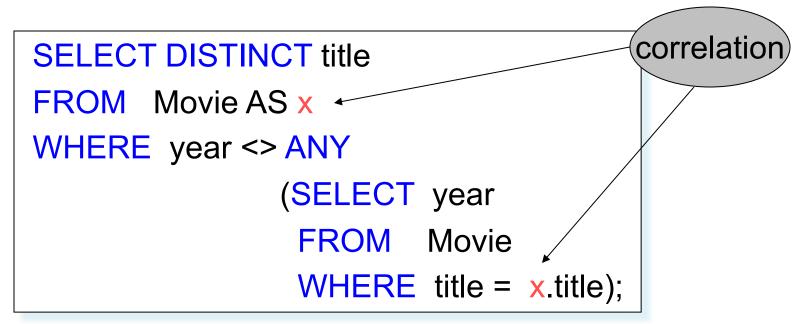
Return cities where one can find companies that manufacture products bought by Joe Blow

SELECT Company.city		
FROM Company		
WHERE Company.name IN		
(SELECT Product.maker		
FROM Purchase, Product		
WHERE Product.pname=Purchase.product		
AND Purchase .buyer = 'Joe Blow');		

Subqueries Returning Relations

You can also use: s > ALL R s > ANY R EXISTS R

Product (pname, price, category, maker)


Find products that are more expensive than all those produced By "Gizmo-Works"

SELECT nameFROMProductWHEREprice > ALL (SELECT priceFROMPurchaseWHEREmaker='Gizmo-Works')

Correlated Queries

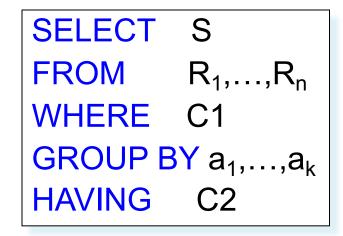
Movie (title, year, director, length)

Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

CSE 444 - Winter 2019

Aggregation


SELECT	avg(price)
FROM	Product
WHERE	maker="Toyota"

SELECTcount(*)FROMProductWHEREyear > 1995

SQL supports several aggregation operations: sum, count, min, max, avg

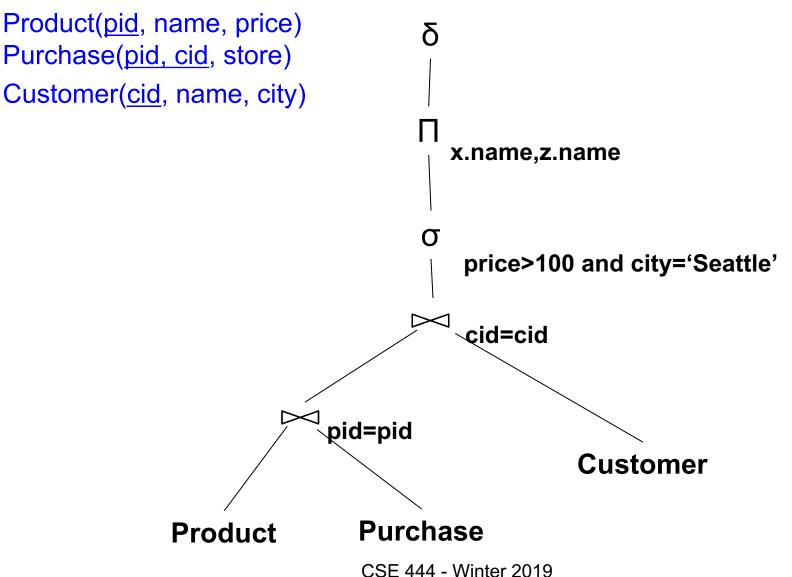
Except count, all aggregations apply to a single attribute

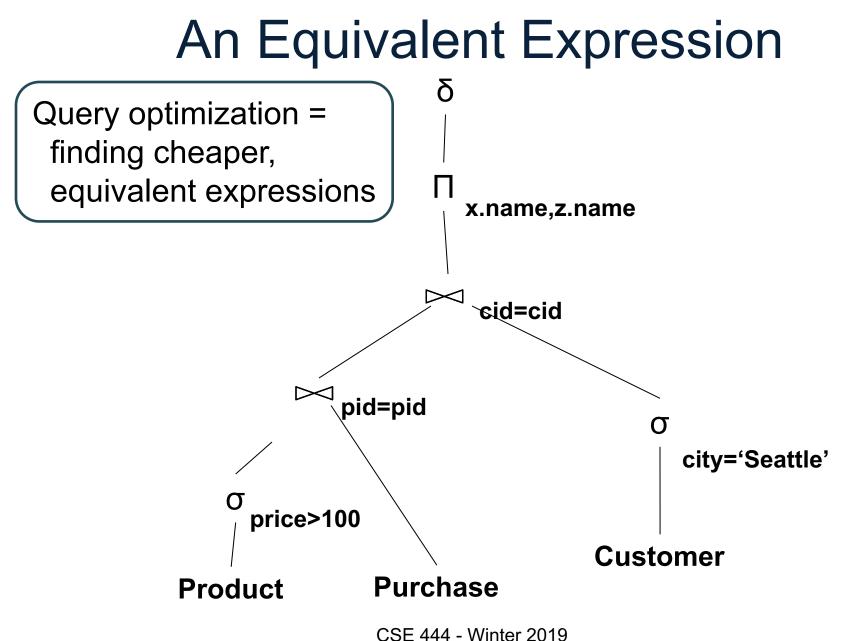
Grouping and Aggregation

Conceptual evaluation steps:

- 1. Evaluate FROM-WHERE, apply condition C1
- 2. Group by the attributes a_1, \ldots, a_k
- 3. Apply condition C2 to each group (may have aggregates)
- 4. Compute aggregates in S and return the result

Read more about it in the book...

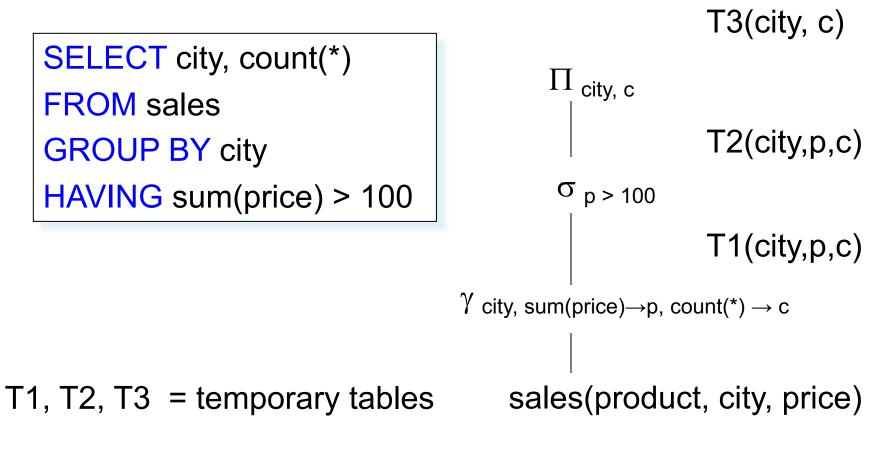

From SQL to RA

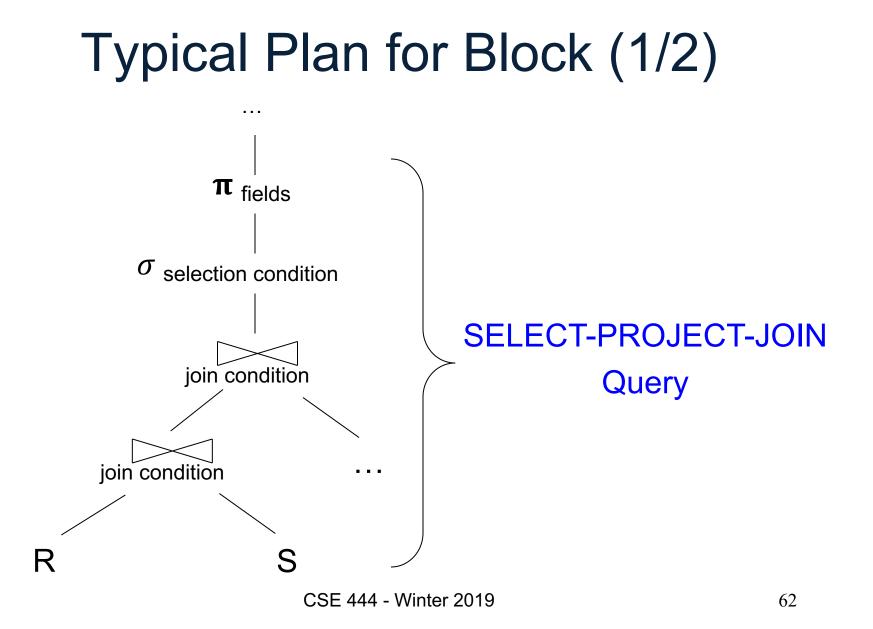

From SQL to RA

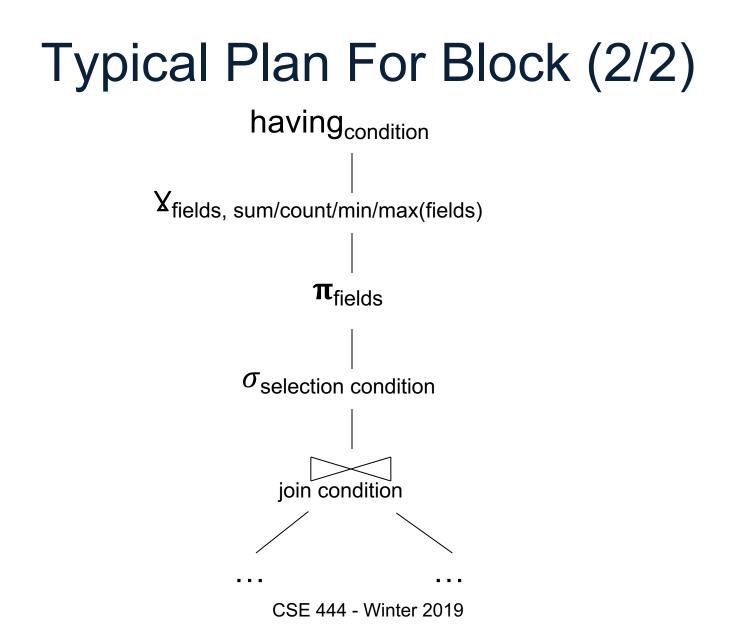
Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

From SQL to RA

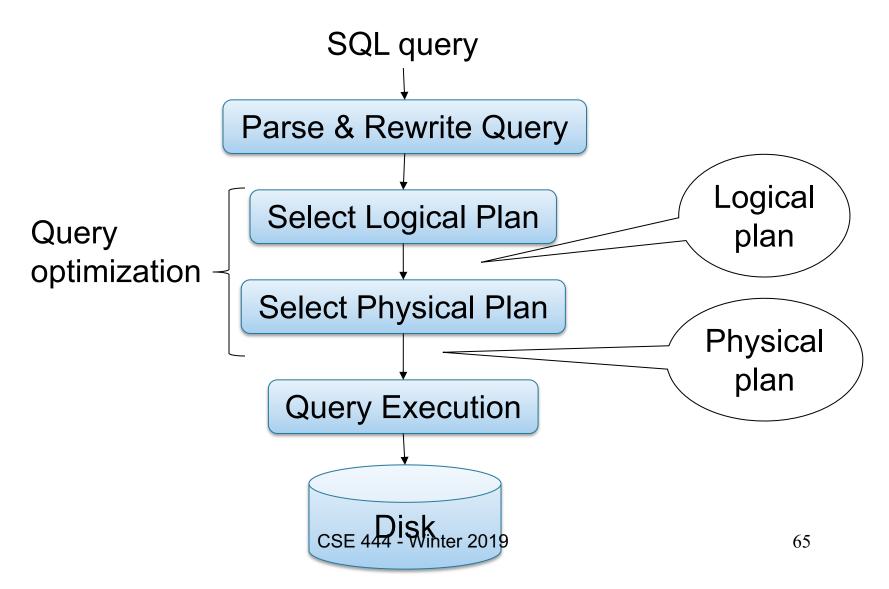



Extended RA: Operators on Bags


- Duplicate elimination $\boldsymbol{\delta}$
- Grouping γ
- Sorting τ

Logical Query Plan

CSE 444 - Winter 2019



Benefits of Relational Model

- Physical data independence
 - Can change how data is organized on disk without affecting applications
- Logical data independence
 - Can change the logical schema without affecting applications (not 100%... consider updates)

Query Evaluation Steps Review

