CSE 444 – Homework 3 Transactions Concurrency Control

Name: _____

Question	Points	Score
1	20	
Total:	20	

1 Concurrency Control with Locking

- 1. (20 points)
 - (a) (5 points) Consider a database with objects X, Y, and Z and assume that there are two transactions T1 and T2. Transaction T1 reads objects X and Y, writes X, and commits. Transaction T2 reads objects X and Y, writes object Y. It then reads objects X and Y again, writes X. Finally, it reads object Z, writes it, and commits. Give three examples of schedules for the transactions T1 and T2 to illustrate each of the points below:
 - 1. Your schedule should contain a write-read conflict that causes one of the transactions to perform a dirty read.
 - 2. Your schedule should contain a read-write conflict that causes one of the transactions to encounter an unrepeatable read.
 - 3. Your schedule should contain a write-write conflict that causes a lost update.

In each case, your schedule may contain additional conflicts, but should contain at least one conflict of the type indicated. (In particular you may give a single schedule, which illustrates all three conflicts!) In each case, indicate the conflict of the type you are illustrating.

CSE 444

Homework 3

(b) (5 points) Consider the following three transactions and schedule (time goes from top to bottom). Is this schedule conflict-serializable? Explain why or why not.

Transaction T_0	Transaction T_1	Transaction T_2
$r_0[A]$		
$w_0[A]$		m [4]
		$ \begin{array}{c} r_2[A] \\ w_2[A] \end{array} $
	$r_1[A]$	~~ <u>2</u> [1]
$r_0[B]$		
		$r_2[B]$
$w_0[B]$		[D]
	$r_1[B]$	$w_2[B]$
	c_1	
c_0	_	
		C_2

$\mathrm{CSE}~444$

Homework 3

(c) (5 points) Show how 2PL can ensure a conflict-serializable schedule for the same transactions above. Use the notation $L_i[A]$ to indicate that transaction *i* acquires the lock on element *A* and $U_i[A]$ to indicate that transaction *i* releases its lock on *A*.

Homework 3

(d) (5 points) If 2PL ensures conflict-serializability, why do we need *strict* 2PL?