
CSE	444:	Database	Internals

Section	4:	
Query	Optimizer

Plan	for	Today

• Problem	1A,	1B:			Estimating	cost	of	a	plan
– You	try	to	compute	the	cost	for	5	mins
– We	will	go	over	the	solution	together

• Problem	2:	Sellinger Optimizer
– We	will	do	it	together

1.	Estimating	Cost	of	a	given	plan	
Student	(sid,	name,	age,	address)
Book(bid,	title,	author)
Checkout(sid,	bid,	date)

Query:
SELECT	S.name
FROM	Student	S,	Book	B,	Checkout	C
WHERE	S.sid	=	C.sid
AND	B.bid	=	C.bid
AND	B.author =	'Olden	Fames'
AND	S.age >=	13
AND	S.age <=	19

Assumptions

• Student:	S					Book:		B									Checkout:		C

• Sid,	bid	are	foreign	keys	in	C	referencing	S	and	B.
• There	are	10,000	Student	records	stored	on	1,000	pages.
• There	are	50,000	Book	records	stored	on	5,000	pages.
• There	are	300,000	Checkout	records	stored	on	15,000	

pages.
• There	are	500	different	authors.
• Student	ages	range	from	7	to	24	uniformly	(integers).

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

5

Student S Checkout C

sid

(File scan) (File scan)

(c) s 13<=age<=19 Ʌ author = ‘Olden Fames’

Physical	Query	Plan	– 1A
Q. Compute

1. the cost and
cardinality in steps
(a) to (d)

2. the total cost

Assumptions:
• Data is not sorted on any

attributes
(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B
(File scan)

V(B,author) = 500
7 <= age <= 24

bid

(Tuple-based nested loop
B inner) (b)

(d) P name

(Block-nested loop,
S outer, C inner)

(On the fly)

(On the fly)

6

Student S Checkout C

sid

(File scan) (File scan)

(Block-nested loop,
S outer, C inner)

(c) s 13<=age<=19 Ʌ author = ‘Olden Fames’

Solution	– 1A

(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B
(File Scan)

V(B,author) = 500
7 <= age <= 24

(a)
Cost (I/O)
B(S) + B(S) * B(C)
= 1000 + 1000 * 15000
= 15,001,000

Cardinality
= T(S) * T(C)/V(S, sid)
= 300,000 (foreign key join)

(b)
Cost(I/O)
= T(S join C) * B(B)
= 300,000 * 5,000 = 15 * 108

Cardinality
= T(S join C) * T(B)/ V(B, bid))
= 300,000 (foreign key join)

(c, d)
Cost(I/O)
= 0 (on the fly)

Cardinality:
300,000 * 1/500 * 7/18
= 234 (approx)
(assuming uniformity and
independence)

bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

Total cost = 1,515,001,000
Final cardinality = 234 (approx)

7

Student SCheckout C

bid

(Index scan)
(Index scan)

(f) s 13<=age<=19

Physical	Query	Plan	– 1B
Q. Compute

1. the cost and
cardinality in steps
(a) to (g)

2. the total cost
Assumptions:
• Unclustered B+tree index on

B.author
• Clustered B+tree index on

C.bid
• All index pages are in memory
• Unlimited memory

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B
(File scan)

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop,
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

8

Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 13<=age<=19

Solution	– 1B

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

(File scan)

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop,
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

(a)
cost (I/O)

= T(B) / V(B, author)
= 50,000/500 = 100 (unclustered)

cardinality = 100

(b) Cost = 0
cardinality = 100

(c)
i. one index lookup per outer B tuple
ii. 1 book has 6 checkouts (uniformity)
iii. # C tuples per page = T(C)/B(C) = 20
iv. 6 tuples fit in at most 2 consecutive pages

(clustered) – or 1 if all fit on the page
Cost = 100 * 2= 200
cardinality = 100 * 6 = 600

(d) Cost =0, cardinality= 600
(e) Outer relation is already in memory,
need to scan S relation
Cost B(S) = 1000
Cardinality = 600
(f) Cost = 0

Cardinality = 600 * 7/18 = 234
(approx)

(g) Cost= 0, cardinality = 234Total cost = 1300 (compare with 1,515,001,000 in 1A)
Final cardinality = 234 (approx) (same as 1A!)

2.	Sellinger Optimization	Example
Sailors	(sid,	sname,	srating,	age)
Boats(bid,	bname,	color)
Reserves(sid,	bid,	date,	rname)

Query:
SELECT	S.sid,	R.rname
FROM	Sailors	S,	Boats	B,	Reserves	R
WHERE	S.sid	=	R.sid
AND	B.bid	=	R.bid
AND	B.color =	red

Example	is	from	the	Ramakrishnan book

Available	Indexes	
• Sailors:	S					Boats:		B									Reserves:		R

• Sid,	bid	foreign	key	in	R	referencing	S	and	B	resp.
• Sailors

– Unclustered B+	tree	index	on	sid
– Unclustered hash	index	on	sid

• Boats
– Unclustered B+	tree	index	on	color
– Unclustered hash	index	on	color

• Reserves
– Unclustered B+	tree	on	sid
– Clustered	B+	tree	on	bid

S	(sid,	sname,	srating,	age)
B	(bid,	bname,	color)
R	(sid,	bid,	date,	rname)

First	Pass
• Where	to	start?

– How	to	access	each	relation,	assuming	it	would	be	the	first	
relation	being	read

– File	scan	is	also	available!
• Sailors?

– No	selection	matching	an	index,	use	File	Scan	(no	overhead)
• Reserves?

– Same	as	Sailors
• Boats?

– Hash	index	on	color,	matches	B.color =	red
– B+	tree	also	matches	the	predicate,	but	hash	index	is	cheaper

• B+	tree	would	be	cheaper	for	range	queries

S	(sid,	sname,	srating,	age):							1.	B+tree - sid,	2.	hash	index	- sid
B	(bid,	bname,	color)	:							1.	B+tree - color,	2.	hash	index	- color
R	(sid,	bid,	date,	rname)	:	1.	B+tree - sid,	2.	Clustered B+tree - bid

SELECT	S.sid,	R.rname
WHERE	S.sid	=	R.sid
B.bid	=	R.bid,	B.color =	red

Second	Pass
• What	next?

– For	each	of	the	plan	in	Pass	1	taken	as	outer,	consider	joining	
another	relation	as	inner

• What	are	the	combinations?	How	many	new	options?

S	(sid,	sname,	srating,	age):							1.	B+tree - sid,	2.	hash	index	- sid
B	(bid,	bname,	color)	:							1.	B+tree - color,	2.	hash	index	- color
R	(sid,	bid,	date,	rname)	:	1.	B+tree - sid,	2.	Clustered B+tree - bid

SELECT	S.sid,	R.rname
WHERE	S.sid	=	R.sid
B.bid	=	R.bid,	B.color =	red

Outer Inner OPTION	1 OPTION	2 OPTION	3

R	(file	scan) B (B+-color) (hash	color) (File	scan)

R	(file	scan) S (B+-sid) (hash	sid) ,,

S	(file	scan) B (B+-color) (hash	color) ,,

S (file	scan) R (B+-sid) (Cl.	B+	bid) ,,

B	(hash index) R (B+-sid) (Cl.	B+	bid ,,

B	(hash	index) S (B+-sid) (hash	sid) ,,

Second	Pass

S	(sid,	sname,	srating,	age):							1.	B+tree - sid,	2.	hash	index	- sid
B	(bid,	bname,	color)	:							1.	B+tree - color,	2.	hash	index	- color
R	(sid,	bid,	date,	rname)	:	1.	B+tree - sid,	2.	Clustered B+tree - bid

SELECT	S.sid,	R.rname
WHERE	S.sid	=	R.sid
B.bid	=	R.bid,	B.color =	red

Outer Inner OPTION	1 OPTION	2 OPTION	3

R	(file	scan) B (B+-color) (hash	color) (File	scan)

R	(file	scan) S (B+-sid) (hash	sid) ,,

S	(file	scan) B (B+-color) (hash	color) ,,

S (file	scan) R (B+-sid) (Cl.	B+	bid) ,,

B	(hash	index) S (B+-sid) (hash	sid) ,,

B	(hash index) R (B+-sid) (Cl.	B+	bid):	 ,,

• Which	outer-inner	combinations	can	be	discarded?
– B,	S	and	S,	B:																						Cartesian	product!

OPTION	3	is	not	shown	on	next	slide,	
expected	to	be	more	expensive

S	(sid,	sname,	srating,	age):							1.	B+tree - sid,	2.	hash	index	- sid
B	(bid,	bname,	color)	:							1.	B+tree - color,	2.	hash	index	- color
R	(sid,	bid,	date,	rname)	:	1.	B+tree - sid,	2.	Clustered B+tree - bid

SELECT	S.sid,	R.rname
WHERE	S.sid	=	R.sid
B.bid	=	R.bid,	B.color =	red

Outer Inner OPTION	1 OPTION	2

R	(file	scan) S (B+-sid)	 Slower	than	
hash-index
(need	Sailor	tuples matching	
S.sid	=	value,	where	value	
comes	from	an	outer	R	tuple)

(hash	sid):	likely	to	be	faster
2A. Index	nested	loop	join				
2B	Sort	Merge	based	join: (sorted	by	
sid)

R	(file	scan) B (B+-color)	Not	useful (hash	color) Select	those	tuples	where	
B.color =	red		using	the	color	index	(note:	
no	index	on	bid)

S (file	scan) R (B+-sid)	Consider	all	join
methods

(Cl.	B+	bid)	Not	useful

B	(hash
index)

R (B+-sid)	Not	useful (Cl.	B+	bid)
2A.	Index	nested	loop	join
2B.	Sort-merge	join

(sorted	on	bid)
Keep	the	least	cost	plan	between	

• (R,	S)	and	(S,	R)
• (R,	B)	and	(B,	R)

Third	Pass

S	(sid,	sname,	srating,	age):							1.	B+tree - sid,	2.	hash	index	- sid
B	(bid,	bname,	color)	:							1.	B+tree - color,	2.	hash	index	- color
R	(sid,	bid,	date,	rname)	:	1.	B+tree - sid,	2.	Clustered B+tree - bid

SELECT	S.sid,	R.rname
WHERE	S.sid	=	R.sid
B.bid	=	R.bid,	B.color =	red

• Join	with	the	third	relation
• For	each	option	retained	in	Pass	2,	join	with	the	third	
relation

• E.g.
– Boats	(B+tree on	color)	– sort-merged-join – Reserves	
(B+tree on	bid)

– Join	the	result	with	Sailors	(B+	tree	on	sid)	using	sort-merge-
join			

• Need	to	sort	(B	join	R)	by	sid,	was	sorted	on	bid	before
• Outputs	tuples sorted	by	sid
• Not	useful	here,	but	will	be	useful	if	we	had	GROUP	BY	on	sid
• In	general,	a	higher	cost	“interesting”	plans		may	be	retained	(e.g.	
sort	operator	at	root,	grouping	attribute	in	group	by	query	later,	join	
attribute	in	a	later	join)	

Homework	5

• Query	Plan	Cost	Computation
• Query	Optimization

